
Resource planning in risky environments 

A. Farina, A. Gazzarri, M. Lupi & A. Pratelli 
Department of Civil and Industrial Engineering, University of Pisa, Italy 

Abstract 

The amount of any individual risk acceptance criterion is directly related to the 
correspondent amount of expected revenue. At the same time, a decision maker 
often searches for optimal strategies operating under contexts affected both by 
random events and limited information. This paper is focused on the so-called 
portfolio risk problem, concerning the risk management of financial resources. 
The problem leads to an interesting framework that should be applied to other 
fields, such as risk evaluation and system analysis of transport networks in 
emergency conditions, as well as risk management forms to improve engineer’s 
decisions during large projects development.  
Keywords: portfolio risk problem, risk management, emergency conditions. 

1 Introduction 

It is quite easy to imagine the situation that each individual faces when he desires 
to increase his assets by investing in financial products. It is equally easy to 
imagine that several difficulties actually arise in this situation. Firstly, our 
investor, or decision maker, has to act in a non deterministic context and his 
decisions will lead to results that can be only partially governed by the investor 
itself. Therefore, it is necessary to make use of statistic instruments, in order to 
have information about the future from what has happened in the past, and of the 
probability theory, in order to be able to make previsions characterized by a 
certain degree of confidence, and it is at the same time admitted that the results 
of any decision are judged, a priori, according to the expected events. While, in 
retrospect, the actions taken will be assessed according to the facts that actually 
took place and the comparison between what was expected and what has 
happened could be used to better target similar subsequent choices. 
     Another difficulty that arises in front of the investor is that it does not seem to 
be a universally valid measure to determine what, in the broad sense, could be 
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said to be the result of an investment decision. At a first superficial approach, 
this result could be measured with the net gain, i.e. with the difference between 
what has been earned and what has been initially invested. However, this 
represents an excessive simplification for several concurrent reasons. 
     Firstly, the moment in which decisions to invest are taken is usually is usually 
referred to a different time from the moment the same investments are to be 
matured. Several times, actually, the amount of money invested and the incomes 
are staggered on completely different time frames, therefore the general trend 
can be evaluated only in terms of cash flow. There are several standardized 
methods to calculate the cash flow value; however, each method to determine the 
cash flow is a model and, therefore, is subjected to approximations and 
meanwhile it is an object of criticism. The main difficulty that arises in 
quantifying an investment strategy or in comparing one or two alternative 
financial plans consists on the definition itself of “value”: the same quantity of 
money assumes a different meaning for different people, until it changes from 
one situation to the other for the same individual who invests the money. 
     In order to better understand this last concept, a well-known example is 
reported in the following, which has been stated for the first time by Bernoulli in 
1973 and is known as the “paradox of St. Petersburg”. This paradox is the 
following. We suppose of launching a coin until we get heads for the first time; 
and we suppose that N is the number of launches before we get heads (i.e. we get 
heads the first time at the launch N+1); in this case the player will win 2N+1 euros. 
We suppose now that the game has a total prize money of K euros, how much 
you will accept to spend (or invest, or risk) in order to play? 
     It is quite simple to calculate the gain in such a game. Actually the probability 
of gaining 2N+1 euros is equal to 2–(N+1), which is the probability that at the first N 
launches of the coin we always get tails, while at the launch (N+1) we get heads. 
Therefore the expected gain G is equal to: 
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and the net gain will therefore be equal to: K   . 
     As a result, considering the effectiveness of these simple calculations, there is 
not any reason to define any maximum limit to the amount with which we enter 
in the game while on the contrary there is an infinite number of good reasons to 
participate, in its literal sense. However, if you are going to ask a person, even an 
expert of finance, to really participate to the game, it would be quite difficult to 
find someone willing to risk a certain amount, albeit modest, to sit down to play. 
     What has been described is known as a paradox, but it is not at all in the strict 
sense of the term and it is rather a simple example to show how the value of 
money is not perceived directly. What governs the decisions of investors is not 
actually the absolute value of the gain they expect, nor the relative increase of 
their assets, but what could be defined by the name of utility, and which in some 
way is a subjective measure of the degree of propensity, or aversion, to the risk 
of the individual. The hypothesis put forward by Bernoulli [3] was that the 
individual utility associated with a certain amount of money is function of 

132  Urban Transport XXI

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 146, © 2015 WIT Press



the patrimonial consistency owned by the individual, therefore you could assume 
that the contribution of a given sum of money was, to the purpose of the utility, 
inversely proportional to the degree x of overall patrimonial consistency. In other 
words, calling x the patrimonial state and considering an infinitesimal increase 
dx of money, we will have a variation of utility dU given by: 

dx
dU k

x
                                                         (2) 

from which we obtain by integration: 

( ) log( )U x k x C                                                      (3) 

where k and C are constant terms of, respectively, proportionality and 
integration. 
     The hypothesis that the expression above of the utility U(x) is a correct 
interpretation of the aversion to the risk became known, in later times, as the 
principle of diminishing gains. It is obvious that this formula is actually a utility 
model, moreover it should be remembered that investors would have different 
attitudes of propensity to risks and that probably their utility function (if it exists) 
would assume different functional forms. The paradox of St. Petersburg has 
however not been recalled in order to propose a peculiar functional form of the 
utility, but only in order to put in evidence that any investor will always have his 
own propensity to risk and an equally subjective perception of the value of the 
money, therefore possibly giving rise to different types of utility functions. This 
subjectivist approach of the individual’s behavior introduces high complexity in 
evaluating and comparing different alternative investment strategies. 

1.1 Random utility models 

The modern theory of random utility takes its origin in 1947 with the publication 
of the fundamental work by Von Neumann and Morgenstern entitled “Theory of 
games and economic behaviors”. Without going into details, it is considered 
sufficient to mention here that this treaty presented the utility theory from the 
point of view of an axiomatic approach. The major axioms were related to 
completeness (two quantities can always be compared in terms of 
utility),transitivity (if A has a higher utility than B and B has a higher utility than 
C, than A has a higher utility than C), continuity (given three objects A, B, C 
with respectively increasing utilities, there is always a probability [0,1]p  

therefore it is indifferent to get B or to play at a lottery where it is possible to win 
A with probability p or C with probability 1–p; in this case B is called 
“equivalent certainty” of the lottery). There are also other axioms, but it is not 
worth to recall them herewith for synthesis sake. Like any other axiomatic 
theory, the utility theory of Van Neumann and Morgenstern has never been 
immune from criticism. In any case, it represents the first attempt to describe 
within a rigorous framework the economic behavior of rational decision-makers. 
     Immediately below a fairly simple introductory description of the basic 
concepts of utility theory is performed. We make use of an example and we 
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assume that an individual has two possibilities A and B of investment. Both 
investments show different results under different scenarios. Again for example, 
we could have the following possibilities for A: 

- result 10 with p = 1/3; result 20 with p = 1/3; result 30 with p = 1/3; 
while for investment B the possibilities are: 

- result 5 with p = 1/4; result 20 with p = 1/2; result 30 with p = 1/4. 
     If the perceived value of the investment is the real value of the investment 
itself, i.e. the utility function is the identity, taking into account the probabilities 
associated to the three different scenarios, the investment A has an expected 
revenue of 20, while the investment B has an expected revenue of 21.25 
therefore it seems preferable to A. If instead we adopt the model suggested by 
Bernoulli and therefore we use the logarithmic utility function ( ) log( )U x x  then 
the situation changes and the investment A shows an expected value of the 
logarithmic utility of 2.90, while the analogous expected value for the investment 
B is equal to 2.82: in this second case therefore A is better than B. 
     Because the utility function is quite variable from individual to individual, 
different investors will perceive different utilities and therefore will invest in 
different manners. What is important is to try to understand what are the 
characteristics and the attributes of an investor which will condition the shape of 
a utility function. In the simple example exposed before it is clear that if we 
move from an identity utility function to a logarithmic utility function, we move 
from a subject indifferent to the risk to a subject who is averse to risk, or 
prudent. 
     In order to better understand the concept of aversion to risk, i.e. of prudence, 
it should be remembered what previously called “equivalent certainty”. We are 
supposed to have an investment with two known results, which can be referred 
as x and y and which can be referred to two different scenarios, each of which 
have a given probability of respectively p and (1–p); therefore an investor 
indifferent to the risk will remain exactly indifferent to the investment by 
accepting the secure payment corresponding to ))1(( yppx  . This attitude 

characterizes an investor indifferent to risk (or risk neutral) if the indifference 
keeps the same in front of any triple x, y, p, i.e. the utility function for a risk-
neutral investor is: 

 

)()1()())1(( yUpxpUyppxU                          (4) 
 

     We can easily demonstrate that equation (4) is satisfied if and only if U is a 
linear function and therefore the linearity of the utility function implies the 
indifference to the risk.  
     On the other hand, an investor averse to risk would always prefer a secure 
result rather than a lottery, i.e. his utility function satisfies the following 
condition: 

 

)()1()())1(( yUpxpUyppxU                            (5) 
 

Equation (5) coincides with the expression of concavity of a function. For 
example: the logarithmic utility function is concave therefore it corresponds to a 

134  Urban Transport XXI

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 146, © 2015 WIT Press



subject who opposes to risk. To conclude, it should be stated that an investor 
which prefers however to risk in order to get a result, independently from the 
costs supported, will have a convex risk function: 

)()1()())1(( yUpxpUyppxU     (6) 
 

It is also worth underlining that it is fully reasonable to assume that, for any 
investor, the utility function is a non decreasing function and therefore, if it is 
continuous and non differentiable, its derivative is always non negative (although 
in general it is strictly positive). 

2 Measure of portfolio risks 

Given a finite set of possible patrimonial placements, or packages, we assume 
that a portfolio is defined through the percentage xj of each of the j placements of 
the patrimony that an investor may decide to reach with his investment. 
Therefore it immediately follows that 0jx  and that 1 j jx .  

     Assuming that a set  of possible scenarios with its respective associated 
probabilities  and assuming that, for each scenario  and for each collocation 
j, the revenue, or the result, of the investment Rj is known, then, for each 
patrimonial arrangement in exam, it is possible to calculate the expected value 
for the revenue as: 

     jjj RREr                                           (7) 
 

which actually constitutes the expected result, given some possible scenarios, of 
a unitary investment (e.g. 1 euro) in the jth package and for which it is possible to 
immediately obtain, given that the average is a unitary operator, the expected 
revenue for the entire portfolio as: 

jj jrxr                                                          (8) 

Regarding the risk, it is usually associated to the variance (or to the standard 
deviation) of the portfolio revenue. In order to calculate this dispersion measure 
it is necessary to have available some information on the correlation (or the 
covariance) between different collocations. The variance of a given portfolio is 
actually given by: 

     



j jk

kjjijj jj jj RRxxRxRx ,covvarvar 22                 (9) 

where: 
    2var jjj RRER  

                                    (10) 

and: 
     kkjjkj rRrRERR  ,cov                             (11) 

 
We call Q the variance-covariance matrix, whose generic element is: 
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     )var(                                   (12) 

and we call x the array whose jth component is xj; therefore the variance of the 
portfolio can be written: 
 

   QxxrRxE T

j jj   22                                   (13) 

 

As will be shown in the next section, a risk-averse investor will give preference 
to a diversified investment plan rather than opt for a position dominated by a 
single acquisition, in order to reduce the overall risk of the investment. 
     The essential tool for managing risk containment, therefore, becomes the 
correlation that exists between the results of different patrimonial collocations, 
while the variance of the portfolio is proposed as a good measure of the degree 
of dispersion around the mean value of the result. It follows that a prudent person 
will prefer a portfolio characterized by a very low variance, however appropriate 
to its aversion to take risks. It must in any case be noted that the variance is a 
good measure of the degree of dispersion around the mean, but at the same time 
it weighs equally variances of negative sign as those of positive sign. However, it 
is quite normal that an investor, even a prudent individual, would always be 
rather pleased to get a result corresponding to a positive variation with respect to 
the expected value. This implies that in current practice in the financial field 
people often use other terms of measurement, such as to put greater emphasis on 
the risk of loss of capital and not only the risk of deviating from a given expected 
value of the revenue of the investment.  
     An important measure of the risk of losing real capital in a given investment 
is the so-called semi-variance, also known as the downside risk: 
 

 


















 
2

)(;0max
j

jj RrxE 
                                      (14) 

 

For how the downside risk is defined, it is evident that the results above the 
expected value are not taken into account, whereas only the losses, i.e. the results 
below the expected value, contribute to composing the total degree of risk. In 
most cases the results can be similar to the random variables distributed 
according to a normal and then minimizing the variance corresponds to minimize 
the downside risk. In many practical applications, in particular when the results 
are presented with a non-symmetrical probability density function, the downside 
risk reflects better than any other magnitude propensity investor to minimize the 
risk. 

3 Diversify in order to risk less 

Previously it was shown that a prudent person, i.e. a risk-averse investor, usually 
prefers to use a strategy of diversification of his investments in order to contain 
any measure of risk. 
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     The distribution of the invested capital over several different packages is a 
recurrent strategy for investors who want to guarantee a certain coverage for the 
possibility of experiencing poor results of their choices of placement of the 
portfolio. The key to understanding the relationship between diversification and 
risk reduction lies in the correlation between different investments and is defined 
by the relationship: 

)()(

),(

kj

kj
jk RVarRVar

RRCov
        (15) 

We take now under consideration, by way of example, a limit case: let us say 
that there are only two possible placements, A and B, and that a portfolio has 
been realized for a portfolio consisting of a % of A and of a (–1)% of B; if rA 
and rB are the respective expected results of the two placements in question, the 
expected revenue of this portfolio is simply given by: 
 

BA rrr )1(         (16) 
 

If we indicate now with A
2 and with B

2 the variances of the two investments, 
while AB is their covariance, it is equally easy to develop the calculation of the 
variance of the portfolio that will be expressed by: 

  
















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22222








BAB

ABA
ABBA

  (17) 

Assuming that the two locations are perfectly correlated, i.e. 1AB , then, being 

ABBAAB   , it results: 
22 ))1(( BA        (18) 

 

therefore the standard deviation of the portfolio can be obtained as a linear 
combination of the standard deviations of the two packages that form it. In this 
example, the risk of each package is transferred, without any kind of 
modification, to the composition given to the portfolio, therefore the 
diversification among perfectly correlated patrimony collocations is useless, at 
least from the risk reduction point of view. The example given represents the 
mathematical formulation of a quite simple rule: in order to lower the level of 
risk it is necessary to build a portfolio so that each time a group of placements 
goes to poor performances, there is another group which instead gets results that 
exceed the desired revenues. In the case of perfect correlation, all patrimonial 
collocations behave in the same way and therefore it is impossible to compensate 
the risks. Conversely, if two collocations are in perfect anti correlation, i.e. 

1AB   , then the investment risk becomes: 

22 ))1(( BA                                        (19) 

and if we set: 

BA

A





                                            (20) 

we can realize a portfolio without any possibility of risk. 
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     If instead the correlation is neither 1, nor –1, as in the majority of situations, 
we will find an intermediate case. In general, given the characteristics of the two 
investments, it is possible to build a portfolio with a minimal risk choosing a 
value for  in the interval [0,1], therefore the expression of the risk 
 ABBA  )1(2)1( 2222   is minimized. If we now calculate the first 

derivative of this expression with respect to , we obtain: 

  ABBABBA   222 2     (21) 

therefore if this equation were valid, i.e.  222 BAAB   , the coefficient  

would vanish and no risk minimization would be possible.  
     From a more accurate examination it emerges that, however, in this case it 
would be necessary that both 

BA    and 1AB , i.e. that we have two 

collocations perfectly and positively correlated and with a risk percentage totally 
equal. In all the other cases the risk becomes minimum assuming a value 

 1,0  given by the ratio 

ABBABA

ABBAB




222

2




     (22) 

To summarize, the minimum portfolio risk is reached when the following values 
for   are assumed: 


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ABBABA
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






   (23) 

Each aware investor would decide his patrimonial collocation strategy according 
to the portfolio risk minimization criterion in order to ensure the maximum 
revenue.  
     A rational investor would generally choose an efficient portfolio, i.e. a 
portfolio representative of a Pareto optimum in a multi target problem of risks 
minimization and of expected gains maximization.  
     One of the possible strategies to adopt in order to have efficient portfolios is 
to establish the risk level, which could be placed between the minimum risk and 
the risk level to get the maximum revenue. In this case, because the risk of level 
is fixed a priori, we arrive at defining the portfolio composition of the maximum 
expected revenue. 
     An alternative decision could be when the investor decides a predetermined 
gain, intermediate between that obtained with minimum risk and the highest 
possible expected. In this second case, because the gain is established a priori, 
we compose the portfolio with the minimum corresponding risk. 
     These concepts have been generalized and represented by Markowitz [8], who 
formulated the Markowitz portfolio risk model: given a set of n patrimonial 
collocations, each with an expected revenue rRn and characterized of a matrix 
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QRnxn of variance – covariance, the Markowitz model allows to determine the 
composition of the portfolio of minimum risk respect to a given revenue r0: 

 

QxxTmin     (24) 

subject to: 

0rxrT       (25) 

11 xT      (26) 
0x      (27) 

 

The cost function (24) of the Markowitz model represents the minimization of 
the risk associated to the portfolio consisting of the purchase of a share x1 of 
position 1, x2 of position 2, … xn of position n. The fixed revenue r0 is 
guaranteed by the constraint (25), while the constraint (26) establishes that the 
various quotas x are expressed in percent values and therefore by summing all of 
them we get the unit; at the same time, the x cannot be negative because only 
acquisition are possible, as stated in the constraint (27). 
     The Markowitz model of portfolio risk leads to a quadratic programming 
model, which is convex because the variance-covariance matrix is semi defined 
positive. For this reason, several solution algorithms are at disposal, also when 
for high numbers of n the size of the problem is quite large.  
     Besides the work by Markowitz [8], several variants of the model have been 
developed. For example, if we admit the possibility of “uncovered” for some 
collocations, i.e. if the eventuality of xj < 0 is admitted, if we call xj

+ the decision 
of acquiring the jth position, and xj

– the decision of operating at the same position 
as j, the Markowitz model is extended by adding the following constraints: 

 
  xxx                                                        (28) 

     xx TT 11                                                        (29) 

0,  xx                                                           (30) 
 

where: the expression (28) establishes that x is the difference between the 
positive and negative positions of each collocation (in this case, obviously, 
constraint (27) becomes useless). The inequality (29) states that it is not good to 
work in such a way that too many uncovered positions are, and this is performed 
through the parameter  which fixes the value assigned to the maximum 
percentage of uncovered positions admissible in the portfolio. The (30) matches 
the non negativity constraints.  
     Another variant of a certain interest is that proposed for the case in which the 
investor is already at the beginning owner of a certain number of patrimonial 
collocations in a quantity equal to xinitial and has to decide which quota to sell and 
which quota to buy of each of the above mentioned collocations. The original 
model could be adapted to the case under study adding a balancing equation and 
a non negativity constraint: 

sellbuyinitial uyxx     (31) 

where ybuy and ysell are the quantities respectively bought and sold, which actually 
require to add a further non negativity constraint  0, sellbuy yy .  
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     It is necessary to take into account that often the purchase and sell operations 
are accompanied by management costs. If we call fbuy and fsell the unitary cost for 
respectively purchasing and sell a unitary quantity of patrimonial collocation, 

then equation (26), i.e. 11 xT , of the Markowitz model, is replaced by the 
following: 

    buybuysellsell yfyf  11     (32) 
 

which establishes the total amount of money acquired from the sale of ysell units 
(i.e. the sale amount without expenses) is equal to the amount necessary for 
acquiring positions, burdened with the relative expenses. All these modifications 
do not modify the convexity of the problem, therefore the model is still solvable 
with the available calculus techniques for quadratic programming. 
     However, if in this last example the transaction costs would consist of a 
constant rate, i.e. of a part of fixed cost and independent from the amount of 
purchase or sell, then the convexity would be lost and the model would become 
that of mixed non linear integer programming, which implies several solution 
difficulties also for cases of limited dimensions. 
     A further variant of certain interest is derivable from the basic model through 
the introduction of stochastic constraints which impose some limits to the 
probability of hitting a substantial loss. If we indicate with α a given revenue, 
although modest, and with β a given confidence level, then a stochastic 
constraint assumes the following form: 

 

  )(Prob R      (33) 
 

In (33) R assumes the meaning of random variable representative of the portfolio 
revenue if its distribution probability function is known in some way; therefore 
the (33) is equal to a non linear constraint condition. In the specific case that 
revenues of patrimonial collocations are distributed as a normal with average r 
and variance-covariance matrix , then we can demonstrate that the constraint 
(33) can be transformed into the following deterministic expression: 

  

2

2/11 )( xxrT    (34) 

in which (·) indicates the distributive function of the standard normal random 
variable. A model which takes into account the maximization of then expected 
results and which is subjected to a control of the risks of the type seen now could 
be formulated as follows: 

xrTmax        (35)  
subject to: 

  

2

2/11 )( xxrT    (34 rep.) 

11 xT      (26 rep.) 

 0x       (27 rep.) 
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This problem, although non linear, is convex in the case in which the assigned 
confidence level β has such a value that results 0)(1   , i.e. 0.5  ; this 

actually implies that the model is equal to a linear optimization model on a 
convex domain and therefore it is solvable with any of the several available 
algorithmic procedures. Otherwise, if 0.5  , the model becomes non convex 

and there is the actual possibility of getting trapped in some local optimum 
instead of the global one, therefore the search of the global optimum could 
become difficult and challenging on the computational field. 
     Changing context, an investor could have a fairly precise knowledge of his 
portfolio while instead he could be quite uncertain about the composition of the 
variance-covariance matrix. Therefore, given a portfolio, it would be impossible 
to calculate the variance and therefore determine the risk. However, the investor 
could be interested in determining significant limitations on the risk to be 
assumed by adopting a quite imprecise information for the variance-covariance 
matrix. Bringing all of this to the extreme, we could assume that the variance-
covariance matrix  is completely unknown, but however we known a generic 
interval  ijij SL ,  within which the generic element ij falls. In this specific 

situation the investor could desire to know the maximum possible risk that his 
portfolio x could encounter and therefore he should solve the following problem: 

 

xxT


max       (35) 

subject to: 

ijijij SL                                                       (36) 

 T       (37) 

  0       (38) 
 

The cost function (35) states the risk maximization with respect to all the 
possible variance-covariance matrixes. The constraint condition (36) states the 
belonging of each element to the respective known interval. The matrix must be 
symmetrical and semidefinite positive, as stated respectively by the constraints 
(37) and (38). The model now described is known as semi definite programming 
problem, or SDP, and is configured as a particular case of a special class of 
convex problems of non linear programming, which could be solved in a quite 
efficient manner, at least at the current knowledge status, until their dimensions 
remain limited enough. 

4 Concluding remarks 

In the technical literature now exists a well defined complex of studies which 
deal with the so-called portfolio risk problem, i.e. the strategic management of 
patrimonial investments. In all of this, the risk evaluation of a given investment, 
respect to the prevision of a corresponding expected revenue, assumes central 
importance. The relative models attempt to reproduce the behavior of the 
investor who makes choices in a random context. In this context the investor has 
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to evaluate in some way risks and expected revenues having scarce and however 
uncertain information, in order to develop an optimal strategy for the investment. 
This paper has shown an overview of the main aspects of the problem of 
strategic investment management, believing that its general aspects sometimes 
occur, therefore useful parallels can be found also in other sectors of the research 
that require evaluations of situations determined by risk events in relation to 
limited sources of information on events themselves.  
     The analysis of project risks is traditionally neglected in the field of public 
engineering works, according to a wider interpretation of the Arrow and Lind 
Theorem [2]. According to this theorem, the State has at its disposal a 
comparative advantage on privates because of its capability of diversifying its 
risks and spreading them over a wide number of contributors. In practice, the 
diversification of risks on a wide portfolio of projects is never perfect. 
     Similar situations can be found in the management of public transport 
systems, where the portfolio risk theory could be useful in setting up emergency 
plans, or in managing the risk of accidents which may occur during the 
construction of major engineering works. 
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