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Abstract 

According to the state-of-the-art of the methodologies, the development of safety 
performance functions (SPFs) for road sections and intersections requires the 
employment of statistical models to predict expected crash frequencies on the 
basis of traffic volumes and site characteristics to be surveyed and used as input 
to models. Nevertheless, literature reports several studies on issues deriving from 
data features or methodological approaches that may invalidate the efficiency of 
the models and the accuracy of the estimates. Drawing inspiration from the 
above mentioned considerations, the objective of this study is to develop safety 
performance functions for a sample of urban four leg-signalized intersections on 
the basis of 8 years of crash data in Palermo, Italy. Applications of the Conway-
Maxwell model are presented for analyzing traffic crash data exhibiting 
underdispersion. Results comforted authors on the potential of the Conway-
Maxwell model to account for dispersion phenomenon and to provide a good 
goodness-of-fit, as long as the temporal correlation in the data is not considered. 
In this regard, the GEE model, incorporating the time trend, allowed to gain 
further methodological insights compared to models that do not accommodate 
the temporal correlation in crash data. 
Keywords: transportation safety, crash analysis, urban signalized intersections, 
safety performance function. 

1 Introduction 

Safety performance functions (SPFs) are essentially mathematical equations 
explaining interactions between road elements and crash frequencies. The 
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development of SPFs for road sections and intersections requires the employ of 
statistical models to predict expected crash frequencies on the basis of geometric 
and traffic-related explanatory variables to be surveyed and used as input to 
models; (see e.g. [1 4]). Literature reports several studies on key issues deriving 
from crash data features or associated with the modeling of traffic crashes that 
may invalidate the efficiency of the models and the accuracy of the estimates; 
(see e.g. [5]). Some studies have focused particularly on the issue of the 
appropriate model form, i.e. the functional form linking the dependent variable 
to the explanatory variables; this is because the result of a regression model can 
be dependent on the choice of model function [6]. Poisson distribution models 
are usually the first choice in the modeling of traffic crashes because of the non-
negative, discrete and random features [7]. Poisson regression model, however, 
has only one distribution parameter, requiring that the mean and the variance of 
the crash frequency are identical. The applicability of the Poisson models is 
therefore limited: in most of cases, the variance of the crash frequency exceeds 
the mean and crash data are overdispersed; in a few cases, the variance can result 
less than the mean and data exhibit underdispersion. In order to relax the Poisson 
assumption of equidispersion, quasi-likelihood methods represent a potential 
solution. Thus a quasi-Poisson distribution can be used to model crash data: the 
mean is the same of the Poisson mean; the variance is now a function of the 
mean: vtj = µtj = (1 + µtj where  is named the dispersion parameter. In the 
case of under-dispersion <0 (and 0< <1); in the opposite case ( > 0 and  > 
1), data are overdispersed. Several authors have addressed the overdispersion 
issue by using the Negative Binominal regression model; (see e.g. [3, 8]). 
Properties of the traditional NB models have been illustrated by Cameron and 
Trivedi [9]. Lord and Mannering [5] by reviewing and assessing some alternative 
methods for the statistical analysis of crash data have explained that it cannot be 
used in the case of underdispersion; moreover, the dispersion parameter of the 
negative binomial model is incorrectly estimated when data are characterized by 
small sample size and low sample mean [10]. It should be also said that, in 
modeling underdispersion, traditional count-data models can produce incorrect 
parameter estimates; moreover, options in selecting the appropriate distribution 
are more limited [5]. Among the latter, the Conway-Maxwell-Poisson (COM-
Poisson) distribution, introduced in 1962 by Conway and Maxwell, has been 
recently re-introduced by statisticians to model count data characterized by either 
over- or under-dispersion and evaluated in the context of a Generalized Linear 
Model (GLM); (see e.g. [5, 11–13]). Since it was revalued, it has been further 
developed in several directions and applied in multiple fields [14]. Concerning 
other issues associated with crash-frequency data, it should be noted that count 
data often consist of observations over several time periods; thus, with many 
years of data, it is necessary to account for the year-to-year variations in crash 
counts because of the influence of factors that can change every year. This can 
create a temporal correlation that affects the reliability of the SPF estimate 
obtained through traditional model calibration procedures [15]. Generalized 
Estimating Equations (GEEs) overcome this problem, incorporating together 
dispersion and temporal correlation; a GEE model, indeed, can estimate the 
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parameters of a generalized linear model with a possible unknown correlation 
between outcomes [16, 17]. Literature refers on several applications by GEE 
models; see e.g. [18–20]. Recently there is much debate on another matter 
arising under modeling of traffic crashes and concerning the crash model 
transferability; the reader is invited to consult (e.g. [21]).  
     Drawing inspiration from the above considerations, this paper summarizes the 
results of a research aimed at developing SPFs for a sample of urban 4 leg-
signalized intersections on the basis of 8-years of crash data in Palermo, Italy. 
Applications of the COM-Poisson model are presented for handling 
underdispersion as exhibited by crash data. This dataset, indeed, showed to 
exhibit underdispersion when models linking crash data to different explanatory 
variables were estimated. Results confirmed the potential of the COM-Poisson 
model to account for dispersion phenomenon and provided a good goodness-of-
fit. However, COM-Poisson regression models, despite their benefits, have 
disadvantages in terms of model estimation, also as a result of difficulties in 
accounting for temporal correlation in the data; (see [22]). In order to incorporate 
the time trend in crash count data, a different approach based on GEEs was also 
applied in the developing of SPFs. In this regard, the GEE model was able to 
give interesting methodological insights compared to models that do not 
accommodate the temporal correlation in crash data. Explanations on the 
modeling approach for the SPFs development will be reported in the following 
sections; but first, a brief introduction on the characteristics of crash data at the 
intersections that were examined for developing SPFs will be presented. 

2 Crash data analysis 

In Palermo City, Italy, similarly to other cities, a large number of signalized 
intersections are considered sites with promise for safety and operational 
improvements. To address the screening of these intersections, SPFs, predicting 
expected crash frequencies on the basis of traffic volumes and site 
characteristics, need to be developed and used. Despite the great deal of efforts 
associated with the data collection process due limitations on data availability in 
computerized records, crash data from a sample of urban 4-leg signalized 
intersections were directly collected from reports available at the Municipal 
Police Force in Palermo, Italy. Crash data were obtained for the same time 
period of eight years (years 2000–2007) for which data were available for all 
study intersections. Crashes occurred along major and minor roads on the 
intersection approaches were recorded as being at the intersection if within  
20 meters of the intersection center. So 558 crashes were considered at 19 urban  
4-leg signalized intersections (91 percent of multiple-vehicle crashes and  
9 percent of single-vehicle crashes). Figure 1 shows fatal and injury crashes at 
each intersection examined in years 2000–2007. Some of the intersection 
features that were on-field surveyed and considered directly related to the safety 
and operational effectiveness are shown in table 1; it shows, indeed, the 
percentage distribution of intersections having the road characteristics specified 
in table, with reference to major- and minor-roads. 
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Figure 1: Fatal and injury crashes at each intersection in years 2000–2007. 

     Extensive traffic surveys were also carried out in 2007 and gave some 
information about the type of vehicles and maneuvers (through vehicles, left- 
and right-turning vehicles). Major- and minor-road annual average daily traffic 
(AADT) was estimated; AADT values of each year from 2000 through 2006 
were computed using Italian vehicle registrations, as widely reported in [23]. 

Table 1:  Percentage distribution of road elements for all intersections. 

Road element major street minor street 

Number of lanes 
1 lane 21 % 21 % 
2 lanes 47 % 63 % 
3 lanes 32 % 16 % 

Roadway width [m] 
w 10 m 16 % 26 % 
10 m <w 15 m 58 % 58 % 
3w> 15 m 26 % 16 % 

Permitted way system 
one-way only 47 % 63 % 
two-way 53 % 37 % 

 
     Figure 2 shows mean values of crashes and the annual average daily traffic on 
major roads (AADTmajor) and annual average daily traffic on minor roads 
(AADTminor) at the surveyed intersections; values were averaged over the 8-years 
of observation. A study was also made to test whether data distribution tended or 
not to follow the shape of a Poisson distribution (or the Poisson distribution was 
an appropriate model for the data set). The findings were presented in an 
extensive way in [23]. 

3 Statistical models 

This section focuses on the methodological approach followed to estimate SPFs 
for the urban 4-leg signalized intersections under examination.  
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     The selection of explanatory variables to be used, the search for the best 
model form, the estimate of the regression parameters and the model validation 
were the main working steps. 

 

Figure 2: Mean values of AADTmajor, AADTminor and crashes at intersections. 

     It should be noted here that this dataset exhibited signs of underdispersion 
when models linking crash data to different covariates were estimated; so, 
underdispersion in crash data was explored and Conway-Maxwell-Poisson 
model in GLM context was fitted to the data. After testing the potential of the 
aforementioned distribution, time trend was also examined. In order to account 
for correlation, quasi-Poisson models in the framework of Generalized 
Estimating Equations were then performed. GEEs, indeed, allow us to 
incorporate together dispersion and temporal correlation when a quasi-Poisson 
distribution is used for modeling crash data. At last, different goodness-of-fit 
criteria were applied to evaluate predictive performance of models and to find 
the model that best explains the data among all estimated models. The methods 
used will be introduced in the following. 

3.1 Crash modeling and model validation 

Different model forms were investigated considering the combinations of the 
variables considered to be significant. For the case study, the chief road variables 
are the traffic volumes at intersection approaches; besides traffic volumes, 
geometric variables affecting safety are related to major- and minor-road 
characteristics. Only variables found to be statistically significant at the 15% 
significance level were included in the model specification. The exploratory 
analysis also revealed that two functional model forms could be used to explain 
the relationship between crashes and the significant covariates, as follows:  
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Model 1: j1321 PW
j2tj10tj eRWFy

   

Model 2:   j1321 PW
j2tj210tj eRW FFy

   

where: 
ytj =expected number of crashes for the year t and the intersection j; 

F1tj =annual average daily traffic on major road for the year t and the 
intersection j; 

(F1 + F2)tj =sum of annual average daily traffic on major- and minor-roads
for the year t and the intersection j; 

RW2j =minor-road roadway width at the intersection j; 
PW1j =major-road permitted ways at the intersection j (PW1=0 for one 

way only, PW1=1 for two ways or more); 
0, 1, 2, 3 =parameters to be estimated. 

 
     First, in order to address the issue of underdispersion in the data, model 1 and 
model 2 were estimated considering Poisson, quasi-Poisson and COM-Poisson 
distributions. Model regression coefficients and the associate standard errors 
were estimated in GLM context assuming Poisson and quasi-Poisson 
distributions; in both cases, GenStat software was used. COM-Poisson model 
was estimated using R software, by means of codes arranged by Sellers and 
Shmueli [11]. Table 2 provides a very brief overview on COM-Poisson 
distribution properties as discussed in [11].  

Table 2:  Conway–Maxwell–Poisson distribution [11]. 

parameters λ > 0, and ν 0 

tj = a centering parameter [11]; 


the dispersion parameter (ν<1 for 
over-dispersion; ν>1 for under-
dispersion). 

support ytj{0,1,2, …} ytj = a discrete count at year t and at site j; 
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 
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



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good approximation for  ≤ 1 or 
tj > 10; E(Y)= 

variance    
tj

tj
tj log

YE
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


  

 
     Table 3 shows coefficient estimates and goodness-of-fit for model 1 and 
model 2. For an explanation about goodness-of-fit criteria (i.e. MPB, MAD and 
MSPE) see [24]. It should be noted that COM-Poisson coefficients are for the 
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centering parameters    ˆ,x exp=ˆ '
tjtj  , as computed by E(Ytj) in table 2; so they 

cannot be directly compared with Poisson/quasi-Poisson coefficients. MPB, 
MAD and MSPE values in table 3 show that the COM-Poisson regression fits the 
data better the Poisson/quasi-Poisson models for model 1: the MPB values of the 
COM-Poisson highlight that the model fairly estimates crashes; the MAD and 
the MSPE values of the COM-Poisson model, being closer to 0 than the quasi-
Poisson model, highlight that the model have good prediction accuracy.  

Table 3:  Parameter estimates and goodness-of-fit for model 1 and model 2. 

variables 
Poisson quasi-Poisson COM-Poisson 

model 1 model 2 model 1 model 2 model 1 
model 

2 

constant 
-6.56 

(0.84)a 
-6.94 

(0.77)a 
-6.56 

(0.58)a 
-6.94 

(0.60)a 
-14.28b

(2.09)a 
-12.41 
(1.72)a 

F1 
1.74 

(0.15) 
- 

1.74 
(0.11) 

- 
3.91 

(0.52) 
- 

F1 + F2 - 
1.69 

(0.14) 
- 

1.69 
(0.11) 

- 
3.18 

(0.40) 

RW2 
0.86 

(0.20) 
0.73 

(0.17) 
0.86 

(0.14) 
0.73 

(0.14) 
1.94 

(0.38) 
1.38 

(0.28) 

PW1 
0.25 

(0.09) 
0.22 

(0.09) 
0.25 

(0.06) 
0.22 

(0.07) 
0.54 

(0.15) 
0.39 

(0.13) 

 - - - - 
2.41 

(0.30) 
1.99 

(0.25) 

 - - 
-0.53 
(0.06) 

-0.46 
(0.06) 

- - 

)yŷ(
N

1
MPB i

N

1i
i 



 -0.42 0.00 -0.42 0.00 0.01 0.01 

i

N

1i
i

yŷ
N

1
MAD 



 1.35 1.09 1.35 1.09 1.03 1.09 

 
2N

1i
ii yŷ

N

1
MSPE  



 4.47 1.98 4.47 1.98 1.80 1.97 

AICc = −2 log L + 2 490 543 490 543 455 519 
a standard error; b model parameters to be used for determining 

tj̂ ;
cL is the maximized value of the likelihood function for the estimated model; p is the number of 
parameters in the statistical model; see [25].

 
     Conversely, MPB, MAD and MSPE values for model 2 have slight 
differences; so significant information about the prediction accuracy of the 
model is not added. In all cases, AIC values for both models show that the COM-
Poisson model can be considered the best among all estimated models. 
Considering that data consisted of repeated measures over time, possibly 
correlated within an entity, the correlation within responses was also accounted 
for. In order to consider simultaneously both the correlation and the 
underdispersion in the data, only the quasi-Poisson distribution was used due to 
difficulties in accounting for correlation in the data through the COM-Poisson 
model. GEE regressions were fitted assuming that repeated observations were 
correlated in different ways, i.e. under different working correlation matrices. 
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GenStat software was used again. The GEE regression results (i.e. parameter 
estimations and goodness-of-fit for model 1 and model 2) for three different 
correlation matrices are shown in table 4; the marginal R2

m test is now 
introduced and used [17].  
     Slight differences in MPB, MAD and MSPE can be observed for the different 
working correlation matrixes. However, R2

m values provide insights on the best 
correlation structure. GEE regression, indeed, using different working correlation 
matrices (i.e. assuming that repeated observations are correlated in different 
ways) allows to gain a better understanding of the proper correlation structure in 
crash counts. 

Table 4:  Parameter estimates and goodness-of-fit in GEEs. 

variables independence unstructured 7-dependence 
model 1 model 2 model 1 model 2 model 1 model 2 

constant 
 

-6.59  
(0.67) 

-6.94 
(0.82) 

-6.78 
(0.55) 

-7.63 
(0.66) 

-6.97 
(0.51) 

-7.35 
(0.63) 

F1 1.74  
(0.07) 
 

- 1.83 
(0.07) 

 1.84 
(0.06) 
 

 

F1 + F2 - 1.69 
(0.09) 

- 1.78 
(0.08) 

 1.77 
(0.08) 

RW2 0.87  
(0.23) 

0.73 
(0.24) 

0.82 
(0.17) 
 

0.87 
(0.18) 

0.89 
(0.20) 

0.79 
(0.19) 

PW1 0.25  
(0.08) 

0.22 
(0.10) 

0.36 
(0.06) 
 

0.31 
(0.08) 

0.33 
(0.07) 

0.29 
(0.08) 

 -0.53 -0.47 -0.52 -0,45 -0.52 -0.48 
MPB 0.00 0.00 0.13 1.19 0.22 0.27 
MAD 1.04 1.09 1.08 1.14 1.09 

 
1.15 

MSPE 1.80 1.98 1.89 2.09 1.93 
 

2.12 

 

 










 N

1i

2
ii

N

1i

2
ii

2
m

yy

ŷy
1R

 

0.70 0.68 0.68 0.66 0.67 0.65 

 mean value of the dispersion parameter varying over time in the observation period  

4 Conclusions 

The paper describes methods applied to develop SPFs for urban 4-leg, signalized 
intersections. Data of the case study pertain to a sample of 19 4-leg signalized 
intersections in Palermo, Italy, in the years 2000–2007, directly processed from 
Municipal Police Force reports. The development of SPFs involved the selection 
of explanatory variables to be used, whether and how variables could be 

.
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grouped, and how variables could enter into the model to choice the best model 
form. With regards to the functional model form, the power function seemed 
appropriate for the covariate F1 for model 1 (and F1+F2 for model 2) and RW2, 
while the exponential function was the best form for the variable PW1. In order 
to test the Poisson assumption of equi-dispersion, a quasi-Poisson regression was 
implemented, assuming a linear relationship between the variance and the mean. 
Model output exhibited underdispersion; the difficulty to handle the dispersion 
phenomenon by the Negative-Binomial model led us to consider the COM-
Poisson model due to its flexibility in holding both over- and under-dispersed 
data. Results confirmed that the COM-Poisson regression model provided a good 
statistical performance and a better goodness-of-fit than the Poisson/quasi-
Poisson models, as long as the temporal correlation in the data is not considered. 
In this regard, GEE quasi-Poisson model, incorporating the time trend, was then 
performed under different working correlation matrices; it provided interesting 
methodological insights through estimates of model parameters compared to the 
correspondent GLM models (that do not account for the temporal correlation in 
the data). It has to be noted that the large costs associated with the data collection 
process likely conditioned the estimation of model parameters due to the failure 
in the large-sample properties of some parameter-estimation techniques [5]. 
Therefore, though results can help to test the potential of COM-Poisson model in 
handling underdispersed data, researches should be carried out using larger 
sample size to confirm them. At last, applications of the COM-Poisson model in 
GEE context are also desirable to obtain correct estimates for model parameters 
accounting simultaneously both for correlation and for dispersion in the data; in 
this way the interest of findings may not be limited to the research field only.  
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