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Abstract 

Due to the great weight and high costs of electric energy storage systems (ESS), 
the number of pure electric vehicles (EV) is increasing only slowly. As a 
compromise between the autonomous hybrid electric vehicle (HEV) and EV, the 
plug-in HEV (PHEV) allows, like the EV, the recharging of the battery by the 
grid but brings also a combustion engine so as not to depend on the limited 
electric range of the vehicle. Next to the sizing of the vehicle components, the 
energy management strategy has an important influence on the fuel consumption 
of the vehicle. To minimize fuel consumption, predictive energy management is 
necessary, as all stored electric energy should be consumed by the end of the 
trip. In this way it is possible to minimize fuel consumption by substituting as 
much fuel as possible by the use of electric energy. In order to reach the global 
optimal result, a prediction horizon of the optimization for the duration of the 
entire trip is necessary. However, due to model uncertainties and the limited 
calculation capacities of the control units in a vehicle the global optimum cannot 
be achieved. Therefore, measures have to be taken to reduce the computation 
cost on the one hand and achieve results close the global optimum on the other. 
One of these measures, next to an adequate optimization algorithm, is the 
reduction of the prediction horizon. In this study, for a real life cycle including 
urban and highway parts a variation of the prediction horizon is carried out and 
the influence on the fuel consumption is simulated. The respective results are 
calculated using Dynamic Programming to exclude any influence of the chosen 
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energy management strategy. The results are compared to the global optimal fuel 
consumption of the used driving cycle. 
Keywords: plug-in HEV, PHEV, energy management, prediction. 

1 Introduction 

The numbers of sold pure electric vehicles (EV) is still low, as the costs of the 
battery are still high and the electric range of the vehicles low. This situation 
together with the long recharging times of the battery compared to a 
conventional fuel vehicle, hamper the breakthrough of this vehicle type in the 
near future. Instead, hybrid electric vehicles (HEV) are supposed to fill the gap 
between these both vehicle types. A further step to more electrification of the 
vehicles is the plug-in HEV (PHEV), which disposes of a significantly higher 
battery capacity and the possibility of recharging the battery by means of the 
electric grid.  
     Using PHEV on trips longer than the electric range, the use of predictive 
energy management strategies (EM) will gain importance. While for autonomous 
HEV the stored electric energy at the end of the trip is of minor importance, for 
PHEV a higher electric consumption during the trip in general means lower fuel 
consumption. Therefore, for trips longer than the electric range it should reach 
the minimal state of charge (SOC) of the battery – in that way, fuel consumption 
can be minimized [1]. 
     A basic energy management implementation to reach this aim without the 
necessity of prediction is the all-electric-range strategy (AER) [2]. The AER 
strategy starts the vehicle in the beginning of the driving cycle in a pure electric 
driving mode. After reaching a predefined low electric energy level of the battery 
the energy management switches to charge sustaining mode, which is known 
from autonomous HEV. In contrary to predictive strategies, AER does not need 
any knowledge of the future trip. But as consuming the stored electric energy 
already in the beginning of the trip, it has afterwards less potential to avoid bad 
efficiency regions of the combustion engine. Secondly, in the first part using 
electric mode the electric motor is maybe driven is less efficient regions. 
     Therefore, to minimize fuel consumption, a predictive strategy is needed 
which distributes the stored electric energy over the whole driving cycle. It has 
been shown that compared to the AER strategy the fuel consumption can be 
reduced when distributing the electric energy on the whole driving cycle [3, 4]. 
     Due to the limited capacity of the computer on the vehicle, the computational 
effort of the strategy has to be considered. As it increases with the prediction 
horizon, a compromise between fuel saving and prediction horizon length has to 
be found. In [6] a model predictive control with a limited prediction horizon is 
used for a HEV. 
     In this paper, the influence of the horizon length is evaluated for a parallel 
plug-in HEV. To avoid any influence of the control strategy, Dynamic 
Programming (DP) is used to find the respective optimal behaviour. It is 
supposed that information about the whole trip length and additionally velocity 
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and road slope information about the current prediction section are available to 
the strategy. 

2 Vehicle structure 

For the simulation the body parameters of the passenger car SEAT Ibiza ST are 
used, taking into account the weight of the additional components as battery and 
electric motor. The simulated hybrid drivetrain has a parallel structure, that is the 
electric motor and combustion engine are mounted on the same drive shaft so 
that the sum of their torques are applied to the drive shaft. The combustion 
engine can be separated by a clutch from the electric machine to allow electric 
driving without the friction losses of the engine (fig. 1). 
 

 

Figure 1: Drivetrain scheme of a parallel PHEV. 

     The double clutch gearbox disposes of 7 gears to allow the engine working in 
a high efficiency region. Due to the double clutch principle fast gear shifting is 
assumed and therefore shifting losses not considered in the model. The battery 
has a capacity of 4kWh and can be recharged during the trip by the combustion 
engine or afterwards by a connection to the electric grid. To avoid damage to the 
battery the SOC is not allowed to be below of 0.2. To enable at the end of the 
trip the use of the vehicle in hybrid mode without recharging, the strategy leaves 
1.2kWh (which corresponds with a SOC of 0.3) at the trip end in order to make it 
possible to use a HEV charge sustaining operation mode. This might be 
necessary as there is not always enough time for recharging before the next trip. 

Table 1:  Vehicle simulation parameters. 

Vehicle Mass 1450 kg TEM,max 250 Nm 
Af 2.2 m2 Ebattery 4 kWh 
Gears 7 Ebattery,min 0.8 kWh 
PICE,max 51 kW Vbattery 300 V 
TICE,max 110 Nm Rbattery 352.5 mΩ 
PEM,max 40 kW   

Combustion Engine

Automated Manual Transmission Battery

Electric Motor

AC

DC

Charger

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 130, © 2013 WIT Press

Urban Transport XIX  399



3 Driving cycles 

One drawback of governmental driving cycles as the FTP7x or the NEDC for the 
evaluation of HEV is the lack of slope information. Therefore, to take into 
account the influence of hilly terrain, a real life cycle is used. Two recorded 
driving cycles are used, from Barcelona to the SEAT Technical Centre in 
Martorell and the return trip. The return trip is not exactly the same route and is 
driven with higher speed. The length is about 33km and the trips last 1903s and 
2231s (figs 2 and 3).It consists of a short urban part at the beginning and a longer 
one at the end. During the highway part the velocity increases up to 115.1km/h. 
The maximal slope is 4%. The characteristics of the cycle and the vehicle cause 
that it is not possible to drive the whole trip in pure electric driving mode, but 
that the combustion engine has to be used.  
 

 

Figure 2: Vehicle velocity of the 
driving cycle BCN-CTS. 

Figure 3: Height profile of the 
driving cycle BCN-CTS. 

 
     Due to the height difference of 122m between start and end point the vehicle 
benefits in the cycle CTS—BCN of the change of its potential energy. This 
energy change is 
 

 
.kWh47.0MJ71.1  hmgE pot   (1) 

 

Compared to the available electric energy of 2.6kWh this is a non-negligible 
amount and will therefore later be considered in the energy management. The 
characteristics of both driving cycles are summarized in the table below (table 2). 

Table 2:  Characteristics of simulated driving cycles. 

Cycle Duration/s Length/km vmax/km/h vavg/km/h ∆h /m 
BCN-CTS 1903 33.1 127.4 62.6 107.6 
CTS-BCN 2231 33.3 115.1  53.8 122.1 
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Figure 4: Vehicle velocity of the 
driving cycle CTS-BCN. 

Figure 5: Height profile of the 
driving cycle CTS-BCN. 

4 Vehicle models 

The vehicle model used in the simulation is modelled in the environment 
Modelica/Dymola. In order to obtain a sufficiently quick optimization, the 
optimization with Dynamic Programming takes place on a stationary backward 
model, which does not contain time dependent elements. The model is validated 
with measurement data from a roller test bench. In the following the different 
model components are shortly described. 

4.1 Combustion engine 

The fuel consumption of the combustion engine is modelled by a measured 
consumption map of a 51kW engine. The calculated revolution number and the 
torque demand are used to interpolate the corresponding fuel consumption. 
 

 ),( ICEICEf Tfm    (2) 
 

where TICE is the engine torque and ω the angular velocity of the engine shaft. 

4.2 Electric traction chain 

For the Electric Motor the electric losses are modelled by an electric losses map. 
Similar to the combustion engine the revolution number and the torque are used 
to interpolate the corresponding electric losses and so the electric power input is 
known. 
 

 ),( EMEMlossesmechelectric TfPP   (3) 

 
     The battery is modelled using discrete elements of the internal resistances. 
For the inverter a constant efficiency of 92% is assumed. 
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5 Energy management 

The energy management controls the energy content of the battery during the 
trip. This is done by the change of the torque distribution of the demanded torque 
by the driver to the electric motor and the combustion engine. In this way the 
change between the different operating modes recuperation, electric, boost and 
charge is controlled. For plug-in HEV on trips longer than the electric range it is 
wished to substitute as much fuel energy by electric energy to minimize fuel 
consumption. That is, when starting the trip with SOCmax, at the end of the cycle 
there should remain SOCmin with a before defined cushion to allow to use the 
vehicle in charge sustaining mode. The initial SOC of the battery is defined as 
0.9. This, with a minimal SOC of 0.2, leads to an electric energy of Ebattery= 
2.6kWh which can be consumed over the trip length. 
 

 

Figure 6: Electric energy used during the charge depleting mode (CD) and 
the buffer reserved for charge sustaining mode (CS) at the end of 
the cycle. 

5.1 Dynamic programming 

Dynamic Programming (DP) is a common algorithm to calculate the global 
optimal solution of a discrete stochastic optimization task. However, as here the 
optimization task is assumed to be not stochastic, the resulting problem is a 
shortest way problem [5].  
     As it can be applied only on a discrete optimization task, a discretization grid 
for the time and the states of the model has to be defined. A finer grid means 
higher exactness but lower computation speed. As the algorithm is considering 
all possible solutions of the problem, the computation cost is quite high. 
Furthermore, a simple problem has to be defined as the computation cost 
increases exponentially with the states of the optimization problem. Especially 
time dependent states are problematic, as the computation cost increase 
exponentially with the number of states. 
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5.1.1 Algorithm 
The system to which the optimization is applied can be generally be described by 

  ),(1 kkkk uxfx   (4) 

where kx and ku are the state and the control variable at time step k.  Here the 

control variable is the torque of the electric machine EMT while the state variable 

is the SOC of the battery. 
     The control problem can be described as finding the optimal control sequence 

    ),....u(N)),u(u(o 21   (5) 

which minimizes  

  )(min)( oo
o xJxJ  

  (6) 

where   is the set of all possible control sequences, J the sum of the fuel 

consumption at every time step and 0x  the system state at time step 0k . 

5.2 Reduced prediction horizon 

To reach the SOC of 0.3 at the trip end, a predictive energy management has to 
be used. The optimization with a prediction horizon of the whole trip length has 
two shortcomings. Firstly, the computational effort rises significantly subject to 
the used optimization algorithm. Using shortest way optimization like DP, the 
effort increases more than proportional to the horizon time. Secondly, using on-
line optimization strongly simplified drive train models have to be deployed, 
thus the inexactness is increasing with the prediction horizon. Therefore, shorter 
prediction horizons can be advantageous. Using shorter prediction horizons 
means to start the optimization repeatedly for the next trip section. In this paper, 
the optimization is repeated every 120s during the trip. Thus the on-board 
computer has 120s to finish the optimization for the next prediction horizon. A 
difficulty of a shorter prediction horizon is to define the final SOC value at the 
end of every optimization step, as for PHEV a predefined SOC at the trip end is 
to be reached. Here, a SOC set curve is precalculated, from which the 
optimization algorithm gets the SOC set point at the end point of the prediction 
horizon. That is, starting at t = 0s with a prediction horizon of 600s, the 
algorithm gets the SOC to be reached at t = 600s from that function. This step is 
repeated every 120s, that is at t = 120s the algorithm gets from the curve the 
SOC set point of t = 720s and starts the optimization again. To evaluate the 
influence of the precalculated function, three different SOC curves are 
implemented. The first one is linear over the trip distance (fig. 7), starting at 0.9 
and declining to 0.3 at the trip end. Converting the function to the time base, the 
function loses its linear appearance (fig. 8). 
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Figure 7: Linear SOC set point 
function over distance 
for cycle CTS-BCN. 

Figure 8: Linear SOC set point 
function over time for 
cycle CTS-BCN. 

     The second curve (curve B, fig. 9 and fig. 10) takes into account also the road 
slope. In a first step the total available energy besides the energy generated by 
the combustion engine is calculated, that is the available electric energy from the 
battery (60%) and the potential energy due to the height difference. 
 

 potbatterypotbatterytotal EEEEE  6.0   (7) 

 
     This energy is distributed linearly over the trip and adapted to the current 
change during the trip 
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     The third SOC (curve C, fig. 9 and fig. 10)) curve also takes into account the 
efficiency losses of the transmission. To do so, in eqn. (5) and eqn. (6) potE  is 

substituted by 
 

 ontransmissipot
C
pot EE   . (9) 

 
     The curves B and C differ significantly from the only linear curve A. During 
the first inclination of the cycle BCN-CTS the functions B, C drop faster, as it is 
considered more energy is necessary (fig.9). On the other hand, during the 
following downhill grade the function B, C even increases, as the recuperation 
energy or the less energy necessity of the vehicle is considered. The same pattern 
can be seen for the cycle CTS-BCN (fig. 10). So is in the last part the decrease 
very slow, as less energy consumption because of the negative slope is assumed. 
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Figure 9: Predefined SOC set point 
functions for cycle BCN-
CTS. 

Figure 10: Predefined SOC set 
point functions for cycle 
CTS-BCN. 

6 Simulation results 

The simulations are done using the three different SOC set point functions A, B, 
C with prediction horizon lengths of 300, 480, 600 and 1200s. The simulations 
are repeated for both driving cycles. As reference the global optimum of both 
cycles is computed by using a prediction horizon length of the whole trip.  
     For the cycle BCN-CTS the fuel consumption of a prediction horizon of 
1200s is for all SOC functions almost equal to the global optimum (fig. 11). 
Reducing the horizon to 600s, the consumption increases very slightly from 
0.12% to 0.24%. A further reduction to 480s still gives good results with a 
maximal deviation of 0.34%. A horizon of 300s gives a maximal deviation of 
0.56%. The SOC functions using road slope information always outdo function 
A. The desired final of 0.3 is reached with all SOC functions. The used SOC 
function shows only small influence to the results, especially between the both 
function using height information. 
     The results of the return trip CTS-BCN differ from the results above. The 
difficulty of this cycle is that in the last urban part the road slope is negative, thus 
the power demand during this part is low. Using SOC function A, the energy 
management cannot consume all electric energy by the cycle end. Therefore, the 
final SOC value is above 300s (table 3). The remaining electric energy in the 
battery leads to a higher fuel consumption, as instead of the electric energy fuel 
was used to generate the demanded torque. 
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Figure 11: Fuel consumption of trip BCN-CTS. 

 

 

Figure 12: Fuel consumption of trip CTS-BCN. 

 

Table 3:  Fuel consumption using the SOC function A. 

 BCN-CTS  CTS-BCN 
Prediction 
Horizon/s 

Fuel/l 
 

SOCend 

 
Deterioration/% Fuel/l

 
SOCend 

 
Deterioration/% 

300 1.125 0.3 0.56 0.763 0.3236 3.05 
480 1.123 0.3 0.34 0.755 0.3151 1.92 
600 1.122 0.3 0.24 0.756 0.3158 2.01 
1200 1.119 0.3 0 0.741 0.3 0 
Full Trip  1.119 0.3 0 0.741 0.3 0 
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Table 4:  Fuel consumption using the SOC function B. 

 BCN-CTS  CTS-BCN 
Prediction 
Horizon/s 

Fuel/l 
 

SOCend 

 
Deterioration/% Fuel/l 

 
SOCend 

 
Deterioration/% 

300 1.125 0.3 0.53 0.742 0.3 0.20 
480 1.122 0.3 0.28 0.742 0.3 0.18 
600 1.121 0.3 0.16 0.742 0.3 0.13 
1200 1.119 0.3 0 0.741 0.3 0 

Table 5:  Fuel consumption using the SOC function C. 

 BCN-CTS  CTS-BCN 
Prediction 
Horizon/s 

Fuel/l 
 

SOCend 

 
Deterioration/% Fuel/l 

 
SOCend 

 
Deterioration/% 

300 1.124 0.3 0.48 0.744 0.3024 0.42 
480 1.122 0.3 0.24 0.741 0.3 0.07 
600 1.121 0.3 0.12 0.741 0.3 0.04 
1200 1.119 0.3 0 0.741 0.3 0 

7 Conclusions 

Using simple SOC set curves, the prediction horizon can be reduced to several 
minutes while deteriorating the fuel consumption only slightly. For both driving 
cycles the prediction horizon length of 1200s and the global optimal results are 
not notable. Using shorter prediction horizons, the difference of the fuel 
consumption to the global optimum becomes notable. Reducing the prediction 
horizon to 600s, the fuel consumption only increases by up to 2.01%. On the 
other hand, this happens mainly because not all stored electric energy is 
consumed and can be avoided including rode slope information to the set point 
function.  
     Considering the results with function B, C, the only slight increase shows that 
for optimal behaviour of the engine and electric motor it is not necessary to 
optimize over long horizons. Therefore, the fuel consumption of PHEV can be 
optimized while reaching a desired SOC value at the trip end without the 
necessity of an optimization over the whole trip. 
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