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Abstract 

As is well known, a vehicle’s speed fluctuation has significant impact on traffic 
capacity, road safety, fuel consumption, and exhaust gas emission. Considerable 
microscopic traffic models have been developed in past decades, while the 
ability of describing the realistic speed fluctuation has rarely been examined. 
With the data from real traffic, in this study we investigate the performance of 
two typical car-following models on modelling speed fluctuation. Our findings 
indicate that neither of them can mimic a realistic speed fluctuation with high 
accuracy. In addition, it is found that the model with the minimum speed error 
does not necessarily mean it can describe speed fluctuation most realistically. To 
simulate this phenomenon more accurately, by introducing a reasonable duration 
of stable speed, we propose one kind of cellular automata model. Simulation 
results show that the model depicts a vehicle’s speed fluctuation with higher 
fidelity, relative to two typical models.  
Keywords: traffic simulation  car-following model  cellular automata model  
speed fluctuation. 

1 Introduction 

Traffic simulation as an effective tool for traffic system analysis and traffic 
management has become very popular in recent years. One critical problem, 
however, in traffic simulation is the reality of the used models, which has had a 
great effect on the validity of analysis results and correct judgment of traffic 
strategies. Car-following models and lane-changing models, the most significant 
components in a traffic simulator, attract a lot of attention from traffic 
researchers. A number of models have been proposed to describe the phenomena 
from real traffic more accurately [1–8]. 
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     In 1992, Nagel and Schreckenberg [3] proposed a compelling cellular 
automaton model (NaSch model) by introducing a randomization term into the 
deterministic cellular automaton (CA) model, which can reproduce some 
phenomena in real traffic, such as phase transition in traffic flow and the 
spontaneous formation of jams. Thereafter, more realistic traffic features have 
been introduced into this model, for example, slow to start rules [9–11], 
anticipation effects [12, 13] and braking light effects [14, 15]. However, scarce 
attention is paid to examine the reality of the randomization term in the NaSch 
model, which is used to reflect natural speed fluctuation due to human behaviour 
or varying external conditions. Particularly, the randomization term is the most 
important term different from the deterministic CA model in the NaSch model. 
     It is a widely-held and true belief that a vehicle’s speed fluctuation has a 
significant impact on traffic capacity, road safety, fuel consumption, and exhaust 
gas emission [16, 17]. However, the ability to describe the realistic speed 
fluctuation of microscopic traffic models was rarely examined in previous 
studies. In this study, we investigate the performance of two typical car-
following models on depicting the realistic speed fluctuations. Our findings show 
that neither the Gipps model [2] nor the NaSch model [3] can describe the 
realistic speed fluctuation accurately. In addition, we also find that the model 
with the minimum speed error does not necessarily mean it can describe speed 
fluctuation most realistically. In order to overcome this shortcoming of previous 
car-following models and simulate this phenomenon more accurately, by 
introducing the duration term of stable speed, we propose an improved CA 
model. Simulation results show that the speed fluctuation in the improved model 
is more consistent with the real traffic condition, relative to the Gipps and NaSch 
model.  
     This paper is composed of five sections. Two typical car-following models, 
the Gipps and NaSch model, are briefly introduced in the second section, 
followed by the definition of the improved model. The simulation results are in 
the fourth section. The last section is devoted to the conclusion of the study.  

2 Car-following models 

The concept of car-following was first proposed by Reuschel [18] and Pipes 
[19], which is assumed that the following vehicle controls its behaviour with 
respect to the preceding one in the same lane. As one of the most important 
components in a traffic simulator, in past decades a number of car-following 
models were developed to mimic this process more consistently with real traffic 
(see [20] and references therein). In this paper, the performance of the following 
typical models is discussed.  

2.1 Gipps model 

Taking safety reaction time into account, in 1981, Gipps [2] developed a car-
following model consisting of two components: acceleration and deceleration, 
using variables corresponding to the obvious characteristics of drivers and 
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vehicles. Assuming that if one vehicle is not affected by its leader, acceleration 
should increase with speed then decrease to zero as the vehicle approaches the 
desired speed. The desired speed limitation fitted from field data is presented as:     
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where 
na  is the maximum acceleration that the driver in vehicle n wishes to 

apply and 
nV  is the desired velocity. And, ( )nv t  

is the speed of vehicle n at time 

t , T is the reaction time. 
     Furthermore, the speed limitation used to avoid collision with the leading 
vehicle is written as follows: 
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where nb  is the most severe braking that the driver of vehicle n wishes to 

undertake ( 0)nb  , 1ns   is the effective size of vehicle n-1 and b̂  is the 

estimation of 1nb  .  

     Combining the limitation (1) and (2), the velocity of vehicle n at time t T is 
set as: 

 ( ) min{ ( ), ( )}a d
n n nv t T v t T v t T     (3) 

which can guarantee that drivers achieve the desired speed as far as possible and 
avoid collision in the meanwhile.  
 

2.2 NaSch model 

The CA model is based on a coarse description of driving behaviour by a 
discrete representation of both time and space. Road lanes are divided into cells 
of equal size (typically 7.5 meters long). Each cell has two states, occupied or 
not, depending on the presence of a vehicle. Each time step vehicle’s speed and 
position are updated according to its desired speed and whether there is a vehicle 
blocking its movement in front. In 1992, Nagel and Schreckenberg [3] 
introduced stochastic perturbations into updating rules and presented a typical 
CA model with four rules: 
Acceleration, 

max( 1) min( ( ) 1, )n nv t v t V    (4) 

Deceleration, ( 1) min( ( 1), ( ))n n nv t v t g t     (5) 
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Vehicle movement, ( 1) ( ) ( 1)n n nx t x t v t     (7) 

where ( 1)nv t   is a temporary value and 
1( ) ( ) ( ) 1n n ng t x t x t   . 

randC  is a 

random number ranging from [0,1] and P  is a given speed reduction 
probability. ( )nx t

 
is position of vehicle n at time t . 
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2.3 The improved model 

According to driving experiences, it can be keenly evident that drivers always 
intend to maintain a stable speed during their trips rather than to change speed 
continuously, in the pursuit of comfortable driving and fuel saving. On the other 
hand, the emergence of a dangerous gap imposes them to adjust their speed to 
avoid collision with leading vehicles. And, the increasing gap with the leading 
vehicle makes the following driver accelerate in order to follow its leader. After 
such a speed adjustment, stable speed would be retained again and last some 
time. Obviously, the duration of stable speed has a significant effect on speed 
fluctuation. The longer the duration of stable speed, the smaller the magnitude of 
the speed fluctuation. For previous models using a continuous speed variable 
such as Gipps model, however, stable speed cannot be maintained, since a tiny 
change in gap can lead to acceleration or deceleration change and then results in 
speed change. Although the NaSch model uses the randomization term to reflect 
the speed fluctuation, as shown in the next section, choosing the appropriate 
randomization probability P is a very tough task, as P  does not refer to any 
obvious drivers’ characteristics or traffic flow characteristics. In order to 
represent such phenomenon in driving behaviour, we introduce the duration term 
of stable speed to replace the randomization term in the NaSch model. The 
duration of stable speed here is defined as the time between two successive speed 
adjustments. Simulation results in the next section confirm the feasibility of this 
approach at least in terms of modelling speed fluctuation. 
     The model is defined as follows: 
Generating the duration of stable speed, 

1 2 3( , , ,....)nT Rand R R R  (8) 

Determining the speed, 
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Moving the vehicle, ( 1) ( ) ( 1)n n nx t x t v t     (10) 
where 

nT   is the time at which the last speed adjustment of the driver in vehicle 

n  occurred. And, if 
n nt T T   in this time step, the driver needs to adjust speed, 

then 
nT  is updated to 

n nT T   in the next time step. In addition, 
ng  is the same as 

in the NaSch model. Note that in equation (8) random duration of stable speed 
for the driver of vehicle n is chosen from several values and the current gap ( )ng t  

in equation (9) is used to avoid collision with the leading vehicle. When R1, R2, 
R3 all take the same value, the stochastic model reduces to the deterministic CA 
model. Moreover, the improved model is as simple as the NaSch model, which 
implies the model owning a high computational efficiency is also suitable for a 
larger-scale network simulation and online simulation.  
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3 Simulation  

3.1 Data set 

The trajectory data set used in this study was collected on a segment of interstate 
freeway I-80 in Emeryville, California, by using several video cameras that were 
mounted on a nearby high-story building. The data set was provided by the 
Cambridge Systematic Incorporation for the Federal Highway Administration as 
a part of the Next Generation Simulation (NGSIM) project. Detailed information 
of observed vehicles, vehicle class and size, lane identification, two-dimensional 
position, speed and acceleration, were extracted from video data, as well as the 
identification of the preceding and following vehicle.  
     The study site including an on-ramp is 503 m long and has five main lanes 
and one auxiliary lane and the leftmost lane is a high occupancy vehicle (HOV) 
lane. Data reflecting the congested traffic condition between the afternoon peak 
periods were collected from 5:00 p.m. to 5:30 p.m. on April 13, 2005. The video 
data were transcribed at a resolution of 10 frames per second. The data set 
contains 3626 vehicles and the proportion of automobile, truck, motorcycle is 
95.6%, 3.3% and 1.1%, respectively. Traffic flow parameters for density, speed, 
flow are 43.3 (veh/km/lane), 27.9 (km/hr) and 7252 (veh/hr). In addition, these 
data were collected in clear weather, good visibility and dry pavement 
conditions. There were no incidents or events within the study section during 
data collection period. To examine the discussed car-following models, six 
vehicles obviously in a car-following state are selected from the data set. These 
vehicles are automobiles and the mean speed is 6.8 m/s. Figure 1 exhibits the 
trajectories and speed profiles of these vehicles.  

 

Figure 1: Trajectories and speed profiles of the 6 selected vehicles.  
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3.2 Vehicle’s speed fluctuation 

To examine the performance of the Gipps model, NaSch model and the 
improved model, simulations are carried out to model the real driving behaviour 
shown in fig. 1.  

Table 1:  Calibrated parameters for the Gipps model.  

 V2 V3 V4 V5 V6 

an  m/s2 5.6 5.8 2.0 2.7 4.1 

Vn m/s 13.2 34.5 18.6 19.1 31.5 

bn m/s2 -8.7 -7.5 -10.0 -4.0 -10.0 

Sn-1 m 7.5 5.0 9.8 7.8 5.6 

2ˆ /b m s
 

-10.0 -4.9 -5.0 -8.1 -4.0 

 

Figure 2: The simulated speed profiles of the 6 selected vehicles.  

     For the Gipps model, a genetic optimization algorithm is used to calibrate the 
parameters in the model. The calibrated parameters are listed in table 1 and 
reaction time T is 0.6 s. For the NaSch model and the improved model, the 
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simulation results are an average of 10 simulation runs due to the randomization 
term in the model. Furthermore, unlike the value used in equations (4), (6) and 
(9), one cell per time step,  the mean speed of all vehicles is taken as the increase 
or decrease of speed in one time step, 7 m/s one time step. Vmax in both models 
are set as the same, 37.5 m/s and 

1 1( ) ( ) ( ) 2.6n n n ng t x t x t L      , where 
1nL 

 is the 

length of the preceding vehicle and 2.6 is the mean gap of standing vehicles in 
the data set. Each simulation time step represents 0.1 seconds in order to keep 
pace with the recording data. Besides, the first vehicle is fed into the simulation 
run and the following vehicles are updated according to the corresponding 
models. Simulation results are shown in fig. 2.  
     From fig. 2, it appears that due to the deterministic mechanism in the Gipps 
model speed is continuous. Therefore, the speed profiles look much smoother 
than the other two models. The randomization rule in the NaSch model makes 
the speed fluctuation over severe; as a result, no stable speed can be retained. 
While, for the improved model, due to the introduction of the random duration of 
stable speed, during some period vehicles speeds are constant and at some time 
they are changed sharply, which looks more consistent with real conditions.  
     To reflect the differences between these models more clearly, the following 
statistical variables are used to quantitatively measure the closeness of 
simulation results and field data. The standard deviation of speed is used to 
reflect the vehicle’s speed fluctuation, which is defined as: 
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where nv  is the mean speed of vehicle n, T  is the total simulation time. 

Further, the speed fluctuation error rate (SFER) is calculated by:  

 ___________________ 
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In addition, the root mean square error (RMSE) is used to show speed error in 
simulation results relative to the real value: 
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Here, in equations (12) and (13) ,sim sim
n nv and ,obs obs

n nv  are the simulated and 
observed value of vehicle n, respectively. From the definition, it is clear that the 
smaller the value of SFER and RMSE, the more desirable the simulation results. 
The calculation results are listed in table 2. 
     From table 2, it can be seen that the Gipps model achieves the smallest speed 
RMS error. This may result from the rather more parameters in the model and 
the genetic optimization algorithm based calibration method. The improved 
model also obtains an acceptable speed RMS error, although a bit larger than the 
Gipps model. As for the NaSch model, it produces the biggest speed RMS error.  
However, in terms of the speed fluctuation error rate, the mean value in the 
Gipps model and the NaSch model are 39.72% and 27.66%, respectively. While 
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the mean SFER in the improved model are only 2.13%. It is important to note 
that standard deviation in the Gipps model for each vehicle is always less than 
field data and in the NaSch model the value is always more than field data. 
However, the standard deviation in the improved model for some vehicles is 
more than field data and for some vehicle is less than the field data, leading to a 
rather small mean SFER value. 

Table 2:  The simulation results of 6 vehicles.  

 
V2 V3 V4 V5 V6 

Mean 
value 

Field data Mean speed 
(m/s) 

6.83  6.95  6.87  6.81  6.77  6.84  

Speed deviation 1.35 1.23 1.37 1.46 1.64 1.41 

Gipps model Mean speed 
(m/s) 

6.88  6.89  6.86  6.75  6.70  6.82  

Standard 
deviation 

0.90 0.78 0.74 0.88 0.95 0.85 

SFER (%) 33.33 36.59 45.99 39.73 42.07 39.72 

RMSE 0.75 0.86 1.02 0.98 1.10 0.94 

 

NaSch model 

P=0.05 

Mean speed 
(m/s) 

6.94  6.93  6.98  6.97  6.92  6.95  

Standard 
deviation 

1.94 1.85 1.75 1.72 1.74 1.80 

SFER (%) 43.70 50.41 27.74 17.81 6.10 27.66 

RMS error 1.79 1.86 1.96 2.06 2.08 1.95 

The 
improved 
model 
T=Rand(1.5s, 
2s, 2.5s) 

Mean speed  6.94  6.93  6.98  6.98  6.94  6.95  

Standard 
deviation 

1.07 1.21 1.44 1.60 1.89 1.44 

SFER (%) 20.74 1.63 5.11 9.59 15.24 2.13 

RMSE 0.85 1.07 1.16 1.68 1.76 1.30 
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     Furthermore, according to such results, one can see that although the Gipps 
model produces the smallest speed RMS error, it cannot make the speed 
fluctuation most consistent with real conditions. The improved model describes 
the speed fluctuations with highest fidelity among the investigated models, even 
though the speed RMS error is a little higher than the Gipps model.  

3.3 Relationship between randomization term and speed fluctuation 

In previous studies [13, 21–23], the various value of probability P in the kinds of 
NaSch-related models were adopted to research the realistic traffic phenomena. 
However, scarce attention is paid to examine the reality of the randomization 
term in the NaSch model, which is used to reflect natural speed fluctuations due 
to human behavior or varying external conditions, by using the field data. In fact, 
choosing appropriate values for probability P for certain study is a very tough 
task, since it does not relate to any characteristic of traffic behaviour. In this 
subsection, we study the relationship between probability P in NaSch model and 
speed fluctuation, as well as the relationship between duration time T in the 
improved model and speed fluctuation, by using the data of the 6 selected 
vehicles. It is believed that the identified relationship can provide some guidance 
for researchers using the NaSch model or the improved model in their study. The 
simulation results are exhibited by figs. 3 and 4, respectively.  

 

Figure 3: The performance of the NaSch model at different probability P. 

     From fig. 3, one can see that the speed RMS error for all vehicles, along with 
the SFER for V2 and V3, increases sharply with a small increase of P.  SFER for 
V4, V5, V6 and the mean value decreases to the minimum value at P=0.05, then 
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increases fast with the enhancement of P.  Therefore, through such results it can 
be suggested that when the mean standard deviation of speed is less than 1.4 m/s, 
the value of P in randomization terms should not be bigger than 0.05 at a 
microscopic level.  

 

Figure 4: The performance of the improved model at different duration T. 

 
     While, the simulation results in fig. 4 show that when T is less than 3 s, speed 
RMS error for V3, V5 and V6 slowly increases with the enhancement of T. For 
other vehicles and the mean value, speed RMS error decreases with the increase 
of T. Except for V2, all the values of SFER first decreases fast when T is less 
than 1.5 s then increases with the enhancement of T. In addition, it is worth 
noting that at T0=Rand(1.5, 2, 2.5), all the vehicles along with the mean value 
can obtain desirable values both for RMSE and SFER, which means that the 
introduction of randomization improves the reality of the model.  

4 Conclusion 

It is well known that a vehicle’s speed fluctuation has significant impact on 
traffic capacity, road safety, fuel consumption, and exhaust gas emission. We can 
say that the ability of depicting the realistic speed fluctuation is also one of the 
critical benchmarks for microscopic traffic models. In this study, we examined 
two typical car-following models, the Gipps model and the NaSch model. With 
the data from real traffic, our findings show that neither the mentioned models 
can describe the realistic speed fluctuation. By introducing a duration of stable 
speed which directly relates to the characteristics of drivers, we proposed one 
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kind of CA model. Simulation results show that the model is capable of 
mimicking the speed fluctuation in real traffic more accurately. In addition, the 
relationship between random term and speed fluctuation is investigated. It shows 
that the probability P in the NaSch model can make the speed fluctuation over 
severe; even a small change in P can lead to very big error rate in speed 
fluctuation. It suggests that researchers should use caution in choosing 
probability P in their study. The duration of a stable speed term in the improved 
model can be assigned according common driver experience and the appropriate 
adjustment of T can make the speed fluctuation more realistic. 
     Although the performance of the improved model is validated at a 
microscopic level, examining it at a macroscopic level with some real 
application, such as fuel consumption, and exhaust gas emission, is more 
persuasive and compelling, which comprises our further study. 
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