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Abstract

Suburbanisation has been internationally a major phenomenon in the last decades.
Suburb-to-suburb routes are nowadays the most widespread road journeys; and
this resulted in an increment of distances travelled, particularly on faster suburban
highways. The design of highways tends to over-simplify the driving task
and this can result in decreased alertness. Driving behaviour is consequently
impaired and drivers are then more likely to be involved in road crashes. This
is particularly dangerous on highways where the speed limit is high. While
effective countermeasures to this decrement in alertness do not currently exist, the
development of in-vehicle sensors opens avenues for monitoring driving behaviour
in real-time. The aim of this study is to evaluate in real-time the level of alertness
of the driver through surrogate measures that can be collected from in-vehicle
sensors. Slow EEG activity is used as a reference to evaluate driver’s alertness.
Data are collected in a driving simulator instrumented with an eye tracking
system, a heart rate monitor and an electrodermal activity device (N = 25
participants). Four different types of highways (driving scenario of 40 minutes
each) are implemented through the variation of the road design (amount of curves
and hills) and the roadside environment (amount of buildings and traffic). We
show with Neural Networks that reduced alertness can be detected in real-time
with an accuracy of 92% using lane positioning, steering wheel movement, head
rotation, blink frequency, heart rate variability and skin conductance level. Such
results show that it is possible to assess driver’s alertness with surrogate measures.
Such methodology could be used to warn drivers of their alertness level through
the development of an in-vehicle device monitoring in real-time drivers’ behaviour
on highways, and therefore it could result in improved road safety.
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1 Introduction

Most metropolitan cities in the world have experienced rapid suburbanisation
over the past few decades. This phenomenon has not brought people and jobs
closer to each other due to diffuse commuting patterns [1]. Often people are not
able to live close to where they work because of a lack of affordable housing
in many metropolitan areas. Internationally, average trip lengths have increased
dramatically in the last 20 years and this increase has been linked to the growing
use of the car [2]. This led to transport networks developments and increments in
commuting distances. For instance work trip distance has sharply increased while
the mean daily commuting time per capita has shown only a slight growth [3].
More and more people residing in the suburban areas are using faster modes, and
the suburbanisation of houses and workplaces is the outcome of the increasing use
of faster suburban routes instead of slow urban routes [4]. The suburb-to-suburb
journey to work is by far the most widespread. Such journey is made from an
outlying residential area to a nearby suburban employment centre, crossing or not
some towns [2].

Australian cities, with the exception of central Sydney, have been planned
according to the good urban planning practices of the 19th and 20th centuries.
To a large extent endemic congestion has not been a major factor as it is in other
developed countries. Australian cities continue to grow, space being not a problem,
and spatial separation increases at metropolitan, regional and national levels [5].
Disjunction between home and work location increases and communities are
increasingly fragmented and connected by highways [6].

The design of highways tends to over-simplify the driving task. On such roads,
driving is mainly a lane-keeping task. A lane keeping task is not cognitively
stimulating and can cause the driver to suffer from an alertness decrement after
less than 20 minutes [7]. Driving behaviour is consequently impaired and drivers
are then more likely to be involved in road crashes due to potentially slow
reaction times or lack of reaction to unpredictable events. This is particularly
dangerous on highways where the speed limit is high. This draws inattention
to the most important contributor (27%) to fatal and hospitalisation crashes in
2003 in Queensland, Australia (Queensland Transport, 2005). While effective
countermeasures to this decrement in alertness do not currently exist, the
development of in-vehicle sensors opens avenues for monitoring driving behaviour
and reduction in alertness in real-time.

The aim of this study is to evaluate in real-time the level of alertness of the driver
on different types of Australian highways through surrogate measures that can be
collected from in-vehicle sensors. This study focuses on two factors that decrease
alertness: (i) the road design and (ii) the roadside environment. Slow EEG activity
is used as a reference to evaluate driver’s alertness. Alertness decrement is detected
in real-time using surrogate measures related to the driving performance. Data are
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collected in a driving simulator instrumented with an eye tracking system, a heart
rate monitor and an electrodermal activity device (N = 25 participants). Four
different types of highways (driving scenario of 40 minutes each) are implemented
through the variation of the road design (amount of curves and hills) and the
roadside environment (amount of buildings and traffic).

This paper will first introduce the background of the research, and then provide
a description of the experimental design. Then the results of the evaluation of the
driver’s alertness on the different highways will be presented. The last part of this
paper will discuss the implications of the results of the this analysis.

2 Background

2.1 Measuring alertness

The most reliable and reproducible way to measure the alertness of a driver
driving is to use an EEG [8–10]. EEG signals are analysed in the frequency
domain, and four different bands contain the information: α, β, θ and δ. The most
reliable method to measure alertness variation is to use the following algorithm:
θ+α

β . When increasing, this ratio between slow and fast wave activities indicate a
decrement of alertness [11, 12]. Bursts are also of interest to detect increments in
bands occurring relatively sparsely. It can particularly be used to detect microsleep
following alpha and theta activities [13].

An EEG device cannot be used in a vehicle for at least three reasons: (i) the
inconvenience for the driver, (ii) the prohibitive cost, and (iii) the noise introduced
due to electromagnetic field interferences. Nevertheless, such a device can be used
in a laboratory-based experiment so that correlation with driving performance
(observed variables from the driver the car and the environment) can be isolated
and investigated.

2.2 Surrogate measures

Surrogate measures correlated to the alertness level during this study have been
investigated in [14]. They are summarised here:

• ECG (heart rate, inter-beat intervals, heart rate variability)
• Eye activity (blink frequency, eye closure)
• Head rotation (toward the side)
• Electrodermal activity (Skin conductance Level SCL, Non specific

fluctuation rate, rise-time and half-recovery time)
• Simulator data (lane lateral shift variability, speed variability, steering wheel

variability, time to lane crossing)

2.3 Evaluation of alertness using neural networks

Neural networks are composed of a network of simple processing elements
called neurons, which can exhibit complex global behaviour, determined by the
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connections between the processing elements and element parameters. An
elementary neuron computes an output from the inputs as follows: first each input
(here the observations such as reaction times) is weighted appropriately, then the
sum of the weighted inputs and a bias form the input to a transfer function f which
provides the output (here the accuracy) [15].

NNs are capable of approximating any function with a finite number of
discontinuities. Training the neural network consists of adjusting the values
of the connections (weights) between elements. This permits the modelling
of the complex relationship between the relevant measurements Obst (inputs)
and the alertness Alertt (output) at time t. Particularly, multilayer feedforward
networks can model such complex, non-linear relationships and when properly
trained, provide reasonable answers when presented with totally new inputs. In
such a network, inputs are processed through successive layers of neurons, the
information moving in only one direction, forward, from the input nodes (taking
the variables of the problem as inputs), through the hidden nodes (if any) and to
the output node (whose outputs should be as close as possible to the observed
outputs, using the MSE as a cost function), without any cycles or loops in the
network. These networks are trained by backpropagation, which is a gradient
descent algorithm in which the network weights are moved along the negative
of the gradient of the performance function [16].

3 Methods

3.1 Participants

A stratified random sampling approach was used to obtain a representative
population of licensed drivers (for at least two years), regular drivers from different
age groups (as per categories used in road safety i.e. 18–24, 25–59 and 60+). The
60+ category was not targeted in this study due to vision impairments and possible
circadian and cognitive functioning changes related to ageing [17].

Twenty-five subjects aged between 18 and 49 (mean age = 29.1 years, SD =
8.3) volunteered for this study. Thirty participants were expected to drive in this
experiment but five subjects were removed from the sample due to motion sickness
which occurred during training on the driving simulator.

Young drivers were recruited from Queensland University of Technology
(QUT). Other participants were selected from staff at QUT and the general
community. Participants had their licence for a minimum of two years and
drove a minimum of three days per week similar to previous research [18]. All
subjects provided written consent for this study which was approved by QUT
ethics committee. Participants were paid AUS $80 for completing the four driving
sessions; students undertaking the first year psychology subject received course
credit for their participation.

3.2 Experimental design

Both road design and roadside environment of the highway were varied in this
experiment. The combination of low and high variability of both parameters
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Table 1: The four experiment scenarios.

Roadside variability

low high

Road design variability low scenario 1 scenario 2

high scenario 3 scenario 4

resulted in four different scenarios (see Table 1). Scenario 1 is characterised by
low road design variability and a low roadside variability. Roadside variability
is changed to high for scenario 2, while road design variability is increased for
scenario 3. Scenario 4 is done with both road design and roadside variability high.

In each experiment, the participants were asked to drive and follow road rules
for approximately 40 minutes. Each participant is tested on each scenario (repeated
measures design) in the following conditions:

• driving consists of following a lane (no itinerary involved) at constant speed
(60 kilometres per hour), without having to stop the car (no red traffic
lights or other stops) or to press the brakes frequently (no T intersections
or perpendicular turns)

• no manual gear changes were required
• no use of indicators was required
• low traffic conditions (no congestion).

Road geometry is varied through the curvature of the road as well as its altitude.
In the road design with low variability, the road is essentially straight or with little
curves and flat. In the road design with high variability, the road is a sequence of
small straight sections, significant curves and hills.

The roadside environment is varied in terms of scenery (low versus high
variability). Low roadside variability is composed of a desert-like scenery with
bushes along the road with periodic traffic occurring in the oncoming lane
only. This models an Australian rural highway. High roadside variability is
composed of various buildings, roadside barriers, overhanging lights, overpasses
and trees/foliage with traffic surrounding the vehicle (no congestion and no
requirements to overtake). This represents Australian urban highways.

3.3 Experimental conditions

Participants were tested individually in a quiet room in four sessions lasting
approximately one hour per session. Each participant drives in one of the four
scenarios (randomly assigned) in the simulator once a week for four weeks at a
fixed testing time. Testing times are scheduled at 9am, 11am, 1pm and 3pm. Each
participant chooses a testing time for which they feel they are the most alert.

A short practice is performed to familiarise participants with the driving task on
the simulator permitting the setting up of sensors for the experiment at the same
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Figure 1: Screenshots of the 4 scenarios.

time. Next, participants performed their scenario and at the end of the experiment
they answer questions about their level of alertness to check for the absence of
fatigue effect. Participants are also asked not to consume alcohol 12 hours prior to
the experiment.

3.4 Materials

3.4.1 Driving interface
Experimentation was conducted on the driving simulator Scaner from OKTAL.
The participant sits in front of a screen where the Scaner simulator is played
by a RGB video projector. The simulator displays a view from the inside of the
vehicle with a speedometer. The participant drives the simulator using a modified
computer steering wheel which provides force feedback and a two pedal set (brake
and accelerator only). Five speakers reproduce the acoustics environment of inside
a car.

3.4.2 Sensors
Data related to the vehicles dynamics or the environment is collected by the driving
simulator software. Data related to the driver are collected with:

• Bioradio which provides data related to EEG and ECG
• Biopac which provides data related to skin conductance

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 116, © 2011 WIT Press

558  Urban Transport XVII



• Facelab which provides data related to the driver’s eyes (eye movements,
blinks, etc.).

3.4.3 Synchronisation interface
Data collected from the simulator and the different sensors are synchronised using
RTmaps. This software records and time stamps data from different devices and
different computers.

3.5 Data analysis

3.5.1 Alertness measure
Driver alertness is assessed through analysis of data collected with the EEG. EEG
data is collected at 7 different positions on the scalp (O1, O2, T5, T6, P3, P4 and
F3) following the International 10–20 Electrode Placement System at 80 Hz and
are divided into 1 second epochs.

Epochs with too high/low values (threshold ±75 µV ), linear trends, improbable
data and/or abnormally distributed data are rejected. A 4-term Blackman-Harris
window and a 0.5 Hz cut-off high-pass filter were also used to reduce low
frequency artefacts. Fast Fourier Transform (FFT) is performed and this provided
α, β, θ and δ band activities. α+θ

β is computed for each selected epoch. Bursts for
α and θ activities are also computed (threshold 1.5 above the mean). The five first
minutes are used as a reference of normal driving behaviour for comparison with
the alertness impairment throughout the driving experiment. Epoch values above
two standard deviations of the mean of the first five minutes are categorised as
indicating a reduced alertness ( α+θ

β ratio above average).
The proportion ρ of epochs indicating low alertness or microsleeps is calculated

over a time window of one minute. This is used as a measure of alertness by
calculating the complementary proportion Alert(t) = 1 − ρ(t). Alertness is then
separated into discrete levels (as suggested by the data collected in this experiment)
as follows:

• Alert: 0.75 to 1%
• Reduced alertness: 0.55% to 0.75
• Low alertness: 0 to 0.55

3.5.2 Surrogate measures
ECG data are recorded at 80 Hz and are used to automatically extract the heart rate
and inter-beat-interval (IBI). Thresholds to detect peaks are manually adapted in
each session for each participant. Unrealistic values obtained for IBIs are filtered
using 500 and 1300 ms as lower and upper limits respectively.

Eye activity data are collected at 60 Hz. Blink frequency and eye closure
are extracted by Facelab. This device also furnishes data about the driver head
movements, in particular the rotation of the head to the side.

Electrodermal activity is collected at 1 Hz. Skin conductance level and non-
specific fluctuation rates, rise-time and half-recovery time are extracted. A
threshold of 0.02 µS is used to find non-specific responses.
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Car and environment variables are obtained from the simulator. Data collected
from the simulator is sampled at 20 Hz. Lane lateral shift variability, speed
variability, steering wheel movement variability and Time to Lane Crossing (TLC)
were used in this analysis. Only straight sections of road were used to compute
these metrics.

These variables are normalised for each participant using the five first
minutes of driving for each of the four sessions. Due to the high number of
surrogate measurements, a Principal Component Analysis (PCA) is performed to
reduce the number of inputs to the mathematical model. PCA extracts relevant
information from complex datasets and reduces possible correlated variables into
a smaller number of uncorrelated variables called principal components. Principal
components are ordered as a function of their explanation of data variability [19].
Only components explaining more than 5% of the variance in the data are selected
as predictors for the neural networks.

3.5.3 Neural networks
Neural network are trained on part of the data (training set), the remainder (test
set) being used for testing the accuracy of the model in a robust way. Participants
driving only once on a specific scenario, have their data used both for training and
testing for the model accuracy. For each time t (t > 2 min) data up to time t − 1
is used to train the model and then data at time t is used to assess alertness at that
time. This result is compared to the alertness at time t obtained from the EEG.

Neural networks were fitted for this experiment using the tan-sigmoid transfer
function and the Levenberg-Marquardt backpropagation algorithm.

NNs were fitted in two different ways. First NNs were fitted with a discrete
target output. Target output was the alertness level obtained with the EEG (three
categories) and was coded as a vector in three dimensions. The alertness level
inferred from the model is then the category (dimension) with the highest value.
Next, NNs were fitted to model the frequency of alertness lapses during the one
minute time window. These results were then categorised into alertness levels as
detailed in section 3.5.1. Modelling with neural networks was optimised for each
participant in order to obtain the best results. This optimisation is done through
the variation of the number of time slices observed and the number of layers and
neurons.

Assessment of the model’s accuracy was performed as follows. The best model
is the one with (i) the largest mean - between sensitivity and specificity in detecting
the state of low alertness - in the case of a discrete output and (ii) the smallest MSE
in the case of continuous output. Once the best model is selected for each method,
continuous outputs are categorised so that both methods can be compared in their
ability to detect reduced alertness.

4 Results

Principal Component Analysis resulted in the identification of six components
explaining more than 5% of the variance. PCA1 is mainly composed of the
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Table 2: Comparison of the two methods to train NNs.

Method Scenario MSE Sensitivity Specificity Mean

(%) (%) (%) (%)

Discrete

1 - 87 88 88

2 - 89 93 91

3 - 96 95 96

4 - 95 93 94

Continuous

1 1.33 88 38 63

2 0.81 84 43 64

3 1.05 95 41 68

4 1.27 94 65 80

skin conductance level. PCA2 can be reduced to blink frequency. PCA3 is a
combination of skin conductance measures (SCR rise-time and SCR half-recovery
time). PCA4 is the result of a selection of ECG metrics while PCA5 combines
driving performance (lane keeping, steering wheel movement) to skin conductance
measures (NSF rate and SCR rise-time). Finally PCA6 is largely composed of the
head rotation.

NNs were fitted as described in the method section. A comparison of means
shows that the first method (discrete) provided better estimates of the state of
alertness (see Table 2). Actually, both methods are approximately reliable when
their result is a low alertness state (around 90%). The former method is as good
in detecting lapses in alertness (around 90%) while the latter misses half of them
(detection around 50%). Neural networks were able to detect reduced alertness
with an 88% (96% respectively) accuracy on a straight (curvy respectively)
rural highways. NNs were 91% (94% respectively) accurate for straight (curvy
respectively) urban highways.

5 Discussion

This study have shown that Neural networks suit the driving task complexity. It
provides estimates of driver alertness in the range of what is required for the
development of an in-vehicle device predicting driver lapses in alertness. Such
results are obtained after optimisation for each participant, highlighting the need to
adapt to each driver behaviour. Using personality traits groups (sensation-seeking
level, extroversion) in the model is not sufficient in obtaining a reliable model.

Alertness decrement was observed for all different highways modelled in this
study. Such alertness decrement resulted in driving impairment which has been
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accurately used as a surrogate measurement to follow driver alertness. Detection
is accurate on various highways, as underlined by the variation used in this
experiment for both road design and roadside environment.

This experiment also shows similar results in terms of sensitivity and specificity
around 90%. This underlines the high level of accuracy of the detection of
episodes of low alertness, as well as the low level of false alarms when using
this methodology.

During this simulated experiment, it was possible to assess in real-time driver’s
alertness decrement accurately through surrogate measures. Such modelling
supports the idea of designing a countermeasure against crashes due to alertness
impairments on urban and rural highways using ITS devices detecting in real-time
such alertness decrements.
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