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Abstract 

The paper describes a mathematical programming approach used for the line- 
planning problem in urban public transport. The input data include the 
transportation network in a city, O-D matrix of travel demand, and the set of 
available vehicles of specified transportation modes and types. The goal of line 
planning is to design the routes of lines and their frequencies. Supposing an initial 
set of lines has been proposed, the line-planning problem is formulated and solved 
as a multiple criteria optimisation problem, where the criteria reflect the travellers’ 
demand for a high quality service, the operator’s interest in an effective service, 
and the environmental impact of the vehicles. The solution to this problem 
specifies the number of vehicles of the given mode and type operating on the lines. 
Lines, which are not assigned a vehicle, will not operate. At the same time, the 
solution specifies optimal passenger routes in the line network. Then an iterative 
process follows which computes new line frequencies using a discrete choice 
model to respect passengers’ behaviour when they have multiple travel 
alternatives. 
Keywords:  line-planning problem, mathematical programming, multiple criteria 
optimisation, discrete choice model. 

1 Introduction 

Design of urban public transport lines should be addressed in the context of 
public transport planning process, which consists of five stages [3]: 
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1. design of line routes, 
2. frequency setting, 
3. timetable development, 
4. vehicle scheduling, 
5. driver scheduling. 

     The first two steps have decisive influence on the quality of the whole 
transportation system. Line routes and frequencies determine the level to which 
the transportation demand is satisfied because they have direct impact on the 
spatial and time accessibility of the transportation service. The frequency of a 
line indicates the basic timetable period and controls the transportation capacity 
of the line. The route length determines operating costs on the line and together 
with the frequency indicates the number of vehicles needed to operate on the 
line, which further results in investment costs. Thus line routes and frequencies 
are independent variables which influence two main objectives of the public 
transport design, namely the quality of the service perceived by users and the 
operator costs.  
     In several previous approaches (e.g. [2]) the first two stages of the design 
(line routing and frequency setting) were solved simultaneously and referred to 
as the line-planning problem (LPP). In our research we have followed this line of 
research considering the LPP as a multiple criteria optimization problem. We 
have proposed a new solution procedure which combines a mathematical 
programming approach with a trip assignment procedure based on a discrete 
choice model. This paper presents a mathematical programming formulation of 
the multi-criteria LPP and the solution procedure.  

2 Problem statement 

The problem can be stated as follows. Assume that the travel demand is given in 
the form of a so-called origin-destination matrix (OD matrix). An element of the 
OD matrix determines the value of the transportation flow from the origin to the 
destination expressed in the number of travellers per time unit, e.g. an hour. 
Furthermore, an initial set of all feasible lines has been pre-defined. Because the 
line design is not usually performed in an “empty” city without any public 
transport, but rather is regarded as re-engineering of an existing transportation 
system, this set of feasible lines can comprise current lines, modified current 
lines (e.g. lines avoiding overloaded roads), as well as new lines corresponding 
to the shortest routes between origin and destination nodes. The task is to 
determine which lines from the candidate set will operate and to set their 
frequencies so that the quality of the transportation service can be maximal and 
the total operator costs minimal. 
     The optimisation criteria should be stated more precisely. First let us look at 
the quality of the transportation service from the passengers’ point of view. Two 
main aspects of the transportation service perceived by users are time and cost. 
User cost (fare) does not play a role in urban line planning because: 

 Demand is treated as fixed and independent on the service quality offered 
between any origin-destination pair. It means that modal split is supposed 
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to be done before and we deal only with those people who have decided 
for public transport, so only the portion of the travel demand, which is 
related to public transport, inputs the problem.  

 Costs of all urban lines are supposed to be the same.  
     So we can omit user cost and focus on time as the only passenger criterion. If 
travel demand refers to public transport stops, then travel time consists of three 
components: in-vehicle time, origin waiting time (time that a passenger waits for 
a bus at the origin stop), and transfer waiting time (time that a passenger waits 
during transfers). In-vehicle time depends proportionally on line routes. Waiting 
times depend on line frequencies, but this latter dependency is inverse 
proportional, which would result in a non-linear mathematical model [6]. This is 
one of the reasons why waiting times are not included in our mathematical 
programming model. Another reason will be stated in the next section. 
     The second criterion of the LPP is operator costs, which can be divided into 
operating and investment costs. As was explained in the introduction, these costs 
depend directly on route lengths and line frequencies. 
     Another goal of the line design not mentioned so far can be to minimize 
negative environmental impact of the public transport, particularly energy 
consumption and air pollution [1].   

3 Mathematical model 

Input to the model includes a transportation network, travel demand, available 
vehicle fleet, and candidate lines. 
     A transportation network is modelled by a (di)graph G = (N, A, t), where N 
is a set of nodes (stops and road junctions) and A is a set of feasible links, i.e. 
streets that candidate lines pass through. Every link a  A is associated with a 
time distance ta; a vector of time distances is denoted by symbol t.  
     The travel demand is represented by an OD matrix P = {prs}, where prs 
indicates the number of travellers who want to travel in the considered time 
horizon (e.g. an hour) from the origin stop r to the destination stop s. The set of 
all OD pairs (r, s) is denoted by symbol Q.  
     Vehicles of various types and sizes can operate in the network. Let I denote 
the set of available vehicle types (e.g. bus, trolley bus, tram). Vehicles of a given 
type can have different capacities. Let Ji stand for the set of possible sizes for 
vehicle type i I . A vehicle of type i with size j has capacity kij seat places and 
an operator can use at most nij of these vehicles. Further, vehicles differ in 
energy consumption, engine emissions, operating and investment costs. To make 
the model easy to understand and its explanation simpler, we confine to bus 
traffic and consider only one air pollutant, e.g. carbon monoxide CO. The bus 
type is specified by the drive, which may be diesel or Compressed Natural Gas 
(CNG). Let elij be the amount of CO (given in gram) produced by one bus of 
drive type i and size j during one turn-round on line l. The acquisition of one bus 
of drive type i and size j is connected with investment costs dij [€.bus-1]. One 
hour operation of a bus of type i and size j costs cij [€.bus-1.h-1]. 
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     Let L stand for the initial set of all feasible lines. Line l  L is characterised 

by its route and a turnaround time turn
lt  which is the time it takes to drive line l 

including stopping times at stops and lay-over time at the terminal point. 
Turnaround time is assumed to be independent on the vehicle size or loading.  
     The goal is to decide which lines from the candidate set will operate and to 
set their frequencies. This decision is modelled by integer variables xlij which 
determine how many vehicles of type i and size j will operate on line l. Line l 
that is not assigned a vehicle in the optimal solution (i.e. xlij = 0 for all i I , 

ij J ) will not operate. In terms of these variables, frequency fl of line l can be 

calculated as follows: 
 

 
1

i

l lijturn
i I j Jl

f x
t  

    (1) 

 
     A common approach reported in the literature (e.g. in [4, 11, 12]) fixes travel 
paths of the passengers before the lines are proposed. For every pair (r, s), a 
shortest path in the transportation network is computed. The result of this pre-
processing step is the total number of passengers passing through every link in 
the given time period (the value of the flow on the link), which inputs the model 
as a parameter. The model contains a set of constraints assuring that the 
proposed lines cover with a sufficient capacity all those links, which are used by 
at least one passenger. Our model utilizes a different approach (proposed in [2]), 
where optimal passengers’ routes are set during the solution process, i.e. 
assignment of passenger flows on the links is no more an input to the model but 
it becomes an output (a decision). This decision is represented by variables 

0
rs
ay R , which define how many passengers from r to s pass through link a. 

The total in-vehicle time that passengers spend travelling from r to s is expressed 
by the following term: 
 

 rs
a a

a A

t y

   (2) 

 
     However, waiting times cannot be modelled because we do not know in 
advance the number of travellers who board or change particular lines at 
particular stops. 
     A common assumption applied in real traffic is that every line can be served 
only by one vehicle type [13]. To model this assumption, we introduce auxiliary 
binary variables zli. Value 1 of variable zli indicates that vehicles of type i operate 
on line l, otherwise zli is 0. 
     Three other symbols occur in the following model: 
     aL  – a set of lines passing through link a;   

     vA  – a set of links outgoing node v; 

     vA  – a set of links ingoing node v. 
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     Now the mixed integer programming model for the line planning problem 
with multiple criteria can be written as: 
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i
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0rs
ay   for (r, s)  Q, a  A (14) 

0lijx Z   for l  L, i  I, j  Ji (15) 

 0 1liz ,  for l  L, i  I (16) 

 
     The optimisation criteria modelled by objective functions (3)–(6) were 
described in section 2. Objective functions (3)–(6) express investment costs, 
operating costs, emissions, and travelling times respectively. Constraints (7) 
ensure that the total number of passengers travelling through link a does not 
exceed the capacity of vehicles operating on that link. Constraints (8) and (9) 
respectively ensure that the travel demand will be satisfied. Constraints (10) are 
flow conservation equations in nodes of the transportation network. Constraints 
(11) and (12) say that if line l is chosen to operate then it will be served by 
exactly one vehicle type. Here constant M is a big positive number, which does 
not restrict the number of vehicles of type i assigned to line l. Constraint set (13) 
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limits the number of vehicles assigned to line l to the available amount. The 
remaining obligatory constraints (14)–(16) specify variable domains of definition. 

4 Solution process 

The solution methodology proposed in this research was inspired by approach 
published in [7]. It consists of two stages. In the first stage, the multiple objective 
program (MOP) described in the previous section is solved using a scalarization  
 

Begin

Solve the model (3)-(16). Calculate line frequencies f0 using
eqn (1).

Re-assign passengers to links using a discrete choice model
(with regard to waiting times).

Solve the model (3), (4), (5) subject to (23), (11)-(13), (15),
(16). Calculate line frequencies f1 using eqn (1).

abs(f1-f0)>tollerance

f0 = f1

Yes

End

No

Calculate system performance characteristics.

 

Figure 1: Flow chart of the solution process. 
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method. The second stage consists of trip assignment and frequency setting. The 
process is outlined in Fig. 1 and detailed in the following text. 
     Assuming the initial set of candidate lines has been proposed, first the MOP 
(3)–(16) is solved.  
     Scalarization is a traditional approach to solving MOPs, which combines in 
general m objective functions f1, , fm to a single objective function by means of 
a scalarizing function. There are several scalarization techniques. One of them 
uses a reference point in the objective space [5]. A reference point is typically a 
vector of satisfactory or desirable criterion values. In case the analyst does not 
know desirable criterion values, the ideal point may be used as a reference point. 
The ideal point is such a point in the objective space, whose coordinates fi

* are 
the best values of particular objective functions: 
 

   * min :i if f X x x  for 1, ,i m   (17) 
 

where X is a set of feasible solutions. 
     The single objective problem (SOP) corresponding to the given MOP 
minimises a weighted distance between the MOP solution and the ideal point. If 
wi  0 is the weight of the i-th objective function deviation, then the SOP is 
formulated as: 
 

 min    
1

1

pm p
*

i i i
i

w f f


 
  

 
 x  (18) 

                          subject to Xx .  
 

     For p =  we get so-called Tchebycheff-norm scalarization, where the 
objective function (18) takes the form: 
 

 min    
1

*
i i i

i , ,m
max w f f





x  (19) 

 

     If all the objective functions are of the same importance, weights w1, …, wm 
can normalize the deviations of the functions from the ideal point [9]. To derive 
weights this way, we need to know so-called Nadir point. Nadir point is such a 
point in the objective space, whose coordinates fi

N are the worst values of 
particular objective functions: 
 

   max :N
i i Ef f X x x  for 1, ,i m   (20) 

where XE is a set of effective solutions. If cij is a coefficient multiplying variable 
xj, j = 1, …, n in the i-th objective function, then a normalizing coefficient ai is 
defined by eqn (21):  
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i I n
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f f
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f
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


 


 for 1, ,i m   (21) 
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and used to derive weight wi: 
 

 

1

i
i m

i
i

a
w

a





 (22) 

 

     In our line-planning problem, we have four-dimensional objective space, 
where functions f1, …, f4 correspond to objective functions (3), (4), (5), and (6) 
respectively. The solution of the problem (19) subject to (7)–(16) specifies how 
many vehicles of the given type and size are allocated to the lines. Lines, which 
are not assigned a vehicle, will not operate. The line frequencies are derived 
from the number of vehicles using eqn (1).  
     At the same time, the solution specifies optimal passengers’ routes in the line 
network. Since the model minimizes system performance measures, some 
passengers may be forced to take very long routes possibly with a lot of transfers 
because it is inefficient to establish lines covering shortest paths for weak flows. 
     In the second stage of the solution process we try to improve the solution so 
that it can respect passengers’ behaviour in case there are multiple alternative 
paths between a given origin-destination pair. In this stage the line frequencies 
are adjusted repeatedly until the internal consistency of frequencies is achieved. 
     The stage involves an iterative process consisting of trip assignment and 
solution of a simplified mathematical programming model. 
     First a new assignment of travel demand to the proposed set of lines is 
computed using a discrete choice model [10]. This process results in new 
passenger flows on the links.  
     Then a modified MOP based on re-computed flows is solved. Now the model 
does not solve the routes of passengers, it only computes the number of vehicles 
to be assigned to lines, i.e. line frequencies. It means that the modified model 
does not contain variables y, objective (6), constraints (8)–(10) and (14), and 
constraints (7) obtain the following form: 
 

1

a i

lij ij aturn
l L i I j J l

x k q
t  

   for a  A (23) 

 

where qa is the total flow on link a. By solving the model (3), (4), (5) subject to 
(23), (11)–(13), (15), (16) we get new frequencies. These new frequencies are 
compared with the previous ones and if they differ by more than a user-defined 
tolerance then the second stage repeats.  
     The trip assignment procedure should be described more precisely. It 
considers each origin-destination pair separately. For a given (r, s) couple, all 
feasible paths in the line network from stop r to s are found. Feasibility of a path 
is determined by two conditions: first, the path is a direct path or it contains at 
most a user-defined number of transfers; second, the travel time along this path 
(including waiting times) does not exceed the minimum travel time by a 
specified threshold. In case the headways are less than 10 minutes, the average 
passenger waiting time can be estimated using half headway model [4, 7, 8]. 
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Otherwise an analytical model derived in [8] can be used. The trip assignment 
model comes into the play if there are more feasible paths. In such a situation, a 
utility-based choice model can be used to predict the number of passengers who 
take a particular path. A traveller chooses a path with certain probability, which 
depends on the path utility. The utility has a deterministic and a random portion. 
The deterministic portion represents an observed measure of the path, while the 
random portion represents the randomness in the traveller’s behaviour, i.e. that 
component of the utility which is unknown to the analyst. In the context of urban 
public transport we can suppose that all feasible paths with the same origin and 
destination have the same cost. So only the travel time represents the 
deterministic part of the path utility. From the utility-based choice model family, 
the multinomial logit model can be used in the context of path choice. Let K(r, s) 

denote the set of all feasible paths from r to s and path
it  stand for the travel time 

on path i. Then the number of passengers who take path k on their trip from r to s 
is defined by eqn (24). Negative travel time in eqn (24) indicates that increased 
travel time reduces the utility of a path. 
 

  
 

 
 

path
krs rs

k path
i

i K r ,s

exp t
p p

exp t






 (24) 

 

 

     Based on these path flows, link flow qa is computed as the sum of flows on all 
paths which go through link a. 
     After the iterative process has finished, system performance measures can be 
calculated. A decision maker is interested not only in criteria values, but also in 
other characteristics, such as the average in-vehicle time (per a travelling 
person), the total and average waiting time, the total and average number of 
transfers, the minimum, maximum and average line length expressed in number 
of links and number of kilometres, and so on.   

5 Conclusion 

In the paper we have described a multiple criteria mathematical programming 
model for the urban line network design and proposed a solution procedure. The 
solution procedure includes solving the model by a linear programming solver 
and adjustment of the solution using a discrete choice model to make the results 
more realistic. Verification of the model using real data for a middle-sized city in 
the Czech Republic will be presented at the conference.  
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