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Abstract 

It is generally accepted that accident rates tend to be higher at intersections than 
on through sections of a road. This is particularly frequent in urban area where 
roads are characterized by intersections in close succession; moreover, the safe 
and effective operations of the urban road system can be significantly affected by 
safety conditions at intersections.  
     In this paper models and methods designed to understand and to predict the 
accident process at urban intersections are reviewed. In particular, this study 
intends to show why the statistical modelling approach is useful for accident 
analysis and how it can be applied to provide some general advice for conducting 
safety evaluations with accident data.  
     An exploratory example describes how to formulate an accident model for 
urban intersections by the analysis of significant explanatory variables affecting 
accident phenomenon and by the modelling of accident and traffic data for urban 
intersections.  
     Finally, in view of the recent great interest in the safety problems of urban 
roads with particular regard to intersections, the research intends to summarize 
the main features of the accident intersection models and their part in developing 
quantitative safety effectiveness measures for installation design improvements. 
Keywords: accident, intersection, predictive models. 

1 Introduction 

The development of road safety principles and models as a branch of learning 
has happened in recent years and it now demands priority with both an 
innovative approach to scientific research on road safety and a systematic 
approach to implementing road safety countermeasures. Road safety researchers 
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are so called to describe suitably safety problems, but this requires one to revise 
the theories and the models used up to now; moreover, they have to be able to 
select among various models (also used in other field) the best way in which the 
specific unsafe situation can be treated through statistical accident modelling. 
     Researchers, as well as potential users and practitioners, have to deal with 
different tasks in most safety works. First of all they have to describe the present 
situation, collecting accident data (i.e. number of accidents, injuries and 
fatalities, geometric design features and other factors that are the consequences 
of the risk characterizing road traffic) from different data sources (i.e. police 
reports, hospital and insurance company statistics). Several efforts should be 
made to use the best information from sources of reference to evaluate accident 
data.  
     Another task regards the definition of exposure measurements specifically for 
road safety issues: traffic counts, travel habit surveys, local exposure 
measurements and fuel consumption. This is important because the risk is the 
relationships between accidents and exposure in terms of magnitude of activities 
generating road safety problems. Moreover accidents and exposure measures can 
be expressed in different ways. So, the term risk may be correlated to the units 
used in a specific study and it has to be used with attention, particularly when 
comparisons are discussed.  
     A key task is to show how the presence of uncertainties in traffic data used in 
describing the road safety conditions can influence the results and their 
interpretation. Uncertainties and inaccuracies can be caused by many reasons: 
the type of data sources, underreporting and misclassification in the collection of 
data and the time lag between the processing and the reporting of information, 
which may vary for different data. Table 1 shows categories of factors which 
may influence aggregate accident data. 
     Multivariate statistic models (i.e. econometric modelling), as well suited for 
accident analysis as they are for economics, can be used both to explain the 
effect of the systematic variable and to eliminate the effects of the first four 
factors. According to Hauer accident occurrence is best modelled using a 
multivariate statistic model [1]. By way of these methods it is often possible to 
evaluate the effect of a countermeasure.  
     The above considerations highlight that the interpretation of the traffic 
accident phenomenon requests the correct formulation of a predictive model in 
order to models are pictures of the complex reality characterizing road accidents. 
     In this paper, in view of the recent great interest in safety problems of urban 
roads with particular regard to intersections, an excursus of models and methods 
designed to understand and to predict the accident process are reviewed and 
discussed. In particular this study intends to show why the statistical modelling 
approach is useful for accident analysis and how it can be applied to provide 
some general advices for conducting safety evaluations with accident data.  
     By means of the formulation of an accident model for urban intersections, the 
analysis of significant explanatory variables affecting accident phenomenon, as 
well as modelling of traffic accident data for these infrastructures, is illustrated.  
 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 107, © 2009 WIT Press

590  Urban Transport XV



Table 1:  Categories of factors influencing accident counts. 

Categories of factors description 

autonomous factors 

Determined outside the (national) social system: the weather, 
the natural endowment, the population size and structure, the 
state of technology and other factors that can hardly be 
influenced (not in the very long term) by any (single) 
government. 

socio-economic 
conditions 

Subject to political intervention, but rarely with the explicit 
purpose of promoting road safety. 

the size and structure 
of the transportation 

sector 

Not usually intended as an element of road safety policy: 
road infrastructure, public transportation, level-of-service, 
overall travel demand, modal choice, fuel and vehicle tax 
rates, size and structure of vehicle park, penetration rates.  

the system of data 
collection 

Accident underreporting and changes in the reporting 
routines can produce fictitious changes in the accident 
counts. 

randomness 

Inexplicable source of variation particularly prominent in 
small accident counts; for larger accident counts, the law of 
large numbers is prevailing and produces (in analogy with 
the dice game) an astonishing degree of long-run stability. 

accident 
countermeasures 

Measures intended to reduce the risk of being involved or 
injured in a road accident. 

 
Finally, the research intends to summarize the main features of the accident 
intersection models and their contribution in developing quantitative safety 
effectiveness measures. 

2 Review of accident models 

Predictive accident models can be differentiated in cross-sectional models and in 
time-series models. Cross-sectional models consider the (spatial) variation 
between different entities observed at the same time. It notes that an “entity” 
could be a geographically defined unit, or an identifiable physical or institutional 
object (i.e. a person, a family, a company, a vehicle, a car make, or a group of 
such units with specific common characteristics). In time-series modelling the 
unit of observation is a period in time (hour, day, month, year.); this approach 
involves repeated observations of the same physical or institutional object.  
     In cross-sectional analysis data, sets are often characterized by lots of 
variation without strong covariation between the independent variables. Cross-
sectional accident models assume that only the variables entering the model 
explain differences in the units of observations. 
     In time-series modelling, the units of observation may differ because of little 
variation, because time series data sets tend to show considerable collinearity 
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between potential regressors. Moreover, time series models show correlation 
between successive disturbance terms because all the relevant variables have not 
been included in the set of regressors. 
     Lots of highly specialized time series analytical techniques have been 
developed to tackle autocorrelation (i.e. the dependent variable is a function of 
previous representations of itself). Compared to cross-sectional studies, in time-
series modelling these techniques allow one to discuss the autocorrelation as 
additional information to be exploited. Different estimates on the same parameter 
can be obtained through models based on cross-sectional or on time-series data 
sets. Different time horizons can explain the difference in estimates: time-series 
models provide estimates of short term effects; the cross-sectional models 
provide parameters with a long term effect interpretation. In many cases it is not 
obvious which approach provides the correct outcome and combinations of cross 
sections and time series data sets can represent a good source of information. 
     In multivariate statistics the linear regression model is the functional form 
where the systematic part is a linear function of the parameters, but it is not 
necessarily linear in the variables: 

∑
1=

+=
J

j
ijiji uxβy                                            (1) 

where: 
yi = dependent variable; 
xji = independent variables, or a transformation of a set of independent 

variables (logarithmic, quadratic, cubic, or trigonometric functions); 
ui = random error term. 
     Regressors should primarily be chosen starting from the theory used and the 
question to be answered; the multiple correlation and curve fitting ambition may 
lead to a good fit of data but to results with little value in terms of understanding 
and almost impossible to generalise outside the specific sample used. Two main 
methods can be used for estimating the parameters in the model: the least squares 
method and the maximum likelihood method. 
     In presence of autocorrelation the covariance between the error terms related 
to different time points is non-zero; moreover, heteroskedastic (i.e. in statistics a 
measure that refers to the variance of the errors over the sample) is present if the 
error variance is not constant across the sample. Autoregression means that the 
dependent variable depends on previous representations of itself: 

ttptptt uxyαyαyαy +++...++= -2-21-t1                   (2) 

where yt is pth order autoregressive if p  0 and a j = 0  j > p.  
     The typical framework of the generalised linear models is usually represented 
as follows: 

( ) ∑=
j

jiji xβλh                                         (3) 

in which h is the link function: i) monotonic functions link the expected value of 
the dependent variable to a linear regression term; ii) the disturbance term  
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(yi - i) can be very close to any one of the so-called exponential family of 
probability distributions.  
     Literature counts now a large number of examples on applications of this 
methodology to accident analysis: Poisson and negative binomial models can fit 
into category of count data models. To explain the development of aggregate 
exposure, accidents and their severity over time another category of models was 
developed: DRAG model [2] taking into account a very large number of 
explanatory variables. To control the linearity assumption usually included in a 
regression model a DRAG model uses Box-Cox-transformations. A special case 
of the Box-Cox regression model is Log-linear model. The current formulation 
for Log-linear model is: 

( )
t

J

1=j
tjjt u+xβ =yln ∑                                      (4) 

in which the logarithm of the dependent variable is a linear function of the 
coefficients and the error term. This model is different from the Poisson 
specification, where the disturbance term is multiplicative rather than additive. 
     Poisson models are often referred to analyze accidents (i.e. as count data 
models) because the dependent variable - following the Poisson distribution or 
its generalization - is a non-negative integer (or a count variable).  
     In general, the (generalized) Poisson model is suitable to analyze small 
accident counts. The distribution within the Poisson modelling framework is 
normal. So for large accident counts Gaussian models (i.e., normally distributed 
disturbance terms) can be applied.  
     So to formulate an accident model the analyst has to have a good notion of 
the nature of the probability distribution governing the random “disturbance” 
term, because the efficiency of alternative estimation techniques can depend on 
the distributional characteristics of this term. This problem together with the 
choice of the general functional form of the model, the determination of the set 
of explanatory (independent) factors, and the estimate the parameters entering 
the function will be discuss in the following paragraph.  

3 Determination of an accident prediction model 

An accident prediction model, or a Safety Performance Function, is a 
mathematical model that predicts estimates of expected accident frequency for a 
given entity (i.e. a road section, an intersection). The model - an equation or a set 
of equations - links the expected accident frequency to measurable road traits: 
e.g. traffic volume and roadway geometries (lane width, number of lanes, etc). 
The determination of these models, directed to summarize the previous 
knowledge on safety of entities similar to those considered, represents a critical 
component in the consideration of safety in road design and in safety 
evaluations. 
     The expected number of accidents is not a constant but it varies with site and 
time: this variation attributable to causal factors is systematic. Two components 
split the total variation in accident numbers: systematic and random variation: 
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var (y) = E [var (yx)]+var [E(yx)]                             (5) 
where the first term is the random variation and the second term is the systematic 
variation.  
     In multivariate analysis a linear model specifies the relationship between a 
response variable Y and a set of explanatory variables, as follows: 

Y = b0 + b1X1 + b2X2 + ... + bkXk                              (6) 
where b0 is the regression coefficient for the intercept and the bi are the 
regression coefficients computed from the data.  
     A simple linear equation is not able to summarize lots of relationships 
because the dependent variable may have a non-continuous distribution, and the 
predicted values should also follow the respective distribution (i.e. any other 
predicted values are not logically possible). Moreover, the effect of the 
predictors on the dependent variable may not be linear in nature. 
     A generalized linear model differs from the general linear model in two cases: 
i) the distribution of the dependent or response variable cannot be continuous (it 
can be binomial, multinomial, or ordinal multinomial; ii) the dependent variable 
values are predicted from a linear combination of predictor variables, which are 
connected to the dependent variable by a link function. The general linear model 
for a single dependent variable can be considered a special case of the 
generalized linear model [3].  
     In the general linear model a response variable is linearly associated with 
values on the X variables:  

Y = (b0 + b1X1 + b2X2 + ... + bkXk) + e                         (7) 
where e is the error variability and the expected value of e is assumed to be 0. 
     The relationship in the generalized linear model is: 

Y = g (b0 + b1X1 + b2X2 + ... + bkXk) + e                         (8) 
where e is the error, and g(…) is a function. Formally, the inverse function of 
g(…) is called the link function. Table 2 shows that various link functions can be 
chosen, depending on the assumed distribution of the y variable values.  

Table 2:  Link functions. 

Normal, 
Gamma, 
Inverse normal, 
and Poisson 
distributions 

 
Identity link: f(z) = z 
Log link: f(z) = log(z) 
Power link: f(z) = za, for a given a 

Binomial, and 
Ordinal 
Multinomial 
distributions 
 

Logit link: f(z)= log(z/(1-z))  
Probit link: f(z)=invnorm(z) where invnorm is the inverse of 
the standard normal cumulative distribution function.  
Complementary log-log link: f(z)=log(-log(1-z)) 
Log-log link: f(z)=-log(-log(z)) 

Multinomial 
distribution: 

Generalized logit link: f(z1|z2,…,zc) = log(x1/(1-z1-…-zc))  
where the model has c+1 categories. 
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Figure 1: Functional form: a) EIF for data; b) power function F1;  
c) exponential form F2. 
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     Development of the accident prediction models involves some determining 
steps: i) choice of the explanatory variables (regressors), and eventually their 
grouping; ii) search of the best functional form, that is, how variables should 
enter into the model; iii) estimate of regression parameters. This process also 
needs to know the nature of the probability distribution governing the random 
variation because the efficiency of the estimate technique depends on the 
distributional characteristic of this random term. 
     The Integrate-Differentiate method [4] has been proposed to recognize a 
suitable functional form for the model behind the empirical integral function; this 
is when the scatterplot of data is not discernible. In accordance with the ID 
method it assumes a link between the expected accident frequency and the total 
entering annual average daily traffic as exploratory variable [5]. The Empirical 
Integral Function (EIF) allows one to estimate the effective integral function of 
the functional relationship searched for (see Figure 1a). Figures 1b) and 1c) 
report the ln(EIF) as a function of ln(AADT) and of AADT. The ID method has 
showed that power function and exponential function can be assumed to 
represent the functional form of the model. 
     So the possible models are the following: F1 =  AADT and F2 =  e  AADT.  
     Table 3 reports the data fit only for the model F2 as an example. The 
analogous data fit for model F1 has not reported because it was less significant. 
     Least squares principles and (quasi) maximum likelihood method allow 
parameters to be estimated. In large samples maximum likelihood estimation 
method is efficient. On the contrary, the least squares methods can be applied 
even if the probability distribution is not specified (but the efficiency varies with 
the true probability distribution). In general, the aim of developing an accident 
model is not to obtain the best goodness of fit; moreover the goodness of fit is 
not a measure of model performance [6].  
     In presence of temporal correlation within responses an additional effort to 
consider the suitable data correlation structure has to be requested.  
     In these cases, the need to use non-traditional calibration procedures allows 
better estimates of unknown parameters [7].  

4 Final considerations 

Several safety prediction models and methods have been developed to estimate 
the relationship between the expected accident frequency and various urban 
intersection geometry and operational attributes (i.e. number of lanes, number of 
arms, functional classification of the major and/or the minor streets, etc.).  

Table 3:  Data fit for F2 = e β AADT. 

Parameter estimate s.e. t(*) t pr. 
antilog 

of 
estimate 

R2 

Constant 1.35 0.145 9.31 <.001 3.843 
0,6 AADT_1000 0.069 0.0056 12.42 <.001 1.072 

Distribution: Poisson; Link function: Log; Fitted terms: Constant, AADT_1000 
Note that s.e. are based on a dispersion parameter fixed at value 1. 
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     The development of an accident model is a demanding task, particularly when 
different factors concur and several procedures have been designed to settle 
many safety problems. 
     The paper, absolutely not exhaustive, refers briefly starting from current 
literature on the specific topic some problems having to be faced to understand 
(and to predict) the accident process at intersections also through an explorative 
example. Moreover it intends to underline the important contribution of 
statistical modelling to the development of techniques for estimating the safety 
benefits of alternative designs that are not yet available at an advanced level. 
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