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Abstract 

Previously, Akamatsu et al. proposed “tradable bottleneck permits” as a new 
transportation demand management scheme and proved the efficiency thereof for 
a general network. To implement such a scheme, we propose a multi-agent 
system for general transportation networks. The aim of this system is to achieve 
a socially optimal state in which the total transportation cost is minimized by the 
decentralized behaviour of agents. As a concrete step in designing the proposed 
system, we first define the micro behaviour of the agents. We also assume that 
the trading markets for bottleneck permits are described by a tâtonnement 
process. We then derive day-to-day dynamics of aggregated traffic flows and 
permit prices. By analyzing the macro dynamics, we prove that the mean 
dynamics of the aggregated variables (flows and permit prices) converge to a 
socially optimal state.   
Keywords: tradable bottleneck permits, multi-agent system, evolutionary game 
theory. 

1 Introduction 

Before new road regulations are implemented, the road manager is normally 
required to have accurate information on the users’ behaviour (i.e., precise 
demands). For instance, in standard congestion pricing (see, for example Yang 
and Huang [1]), the manager needs to know the potential number of users, their 
desired arrival times and their value of time. It is, however, not always possible 
for such private information to be obtained completely and accurately. If the 
regulations are implemented with incomplete information, this will inevitably  
 

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 101,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Urban Transport XIV  579

doi:10.2495/UT080561



result in an economic loss. An important point to emphasize here is that the 
problem lies in the asymmetry of information between the road manager and 
users. 
     A transportation demand management (TDM) scheme that resolves the 
asymmetric information problem is “tradable bottleneck permits” (TBP) 
proposed by Akamatsu et al. [2], Akamatsu [3]. This scheme is based on the 
following: a) the road manager issues a right that allows the permit holder to 
pass through the bottleneck during a pre-specified time period, and b) a new 
trading market is established for bottleneck permits differentiated by the pre-
specified time. In this scheme, the road manager only needs to know the traffic 
capacity of each link (as queuing congestion can be eliminated merely by issuing 
a number of permits for each link equal to or less than the link capacity). It has 
been proved that equilibrium resource allocation under the scheme is efficient in 
the sense that the total transportation cost in the network is minimized for 
general networks.  
     Although the TBP has the theoretically-desirable properties mentioned above, 
the following problems still need to be addressed: i) the processes for achieving 
equilibrium traffic flow patterns are not shown, and ii) the procedures for trading 
bottleneck permits are cumbersome. The first problem requires a framework that 
can describe the processes, while the latter problem requires a system that 
alleviates the cumbersome procedure. 
     To deal with these problems, we propose a multi-agent system for 
implementing the TBP in general transportation networks. In such a system, 
vehicle-installed agent software chooses, on behalf of the user, an optimal path and 
arrival/departure times based on the user’s preferences. Each agent further deals 
with the cumbersome procedure of trading the bottleneck permits. The system is 
required to have the following properties: i) each agent can choose a path and an 
arrival time using local information only (autonomy of behaviour), ii) the 
algorithm for the agent’s behaviour is simple (briefness of agent behaviour rules), 
and iii) the whole system can converge to equilibrium (stability of dynamics). 
     The purpose of this paper is to design the essential parts of the multi-agent 
system to achieve a socially optimal state under the TBP. As a concrete step in 
designing the proposed system, we first define the micro behaviour of the agents. 
Specifically, for the agents’ behaviour, we use the perturbed best response model 
that is popular in evolutionary game theory. We also assume that the dynamics 
of the price of bottleneck permits in the trading market is described by 
tâtonnement dynamics. We then derive the day-to-day dynamics of aggregated 
traffic flows and permit prices. By analyzing the macro dynamics, we prove that 
the mean dynamics of the aggregated variables (flows and permit prices) 
converges to a socially optimal state.   

2 The model 

2.1 Networks 

In this paper, we consider dynamic traffic flows in a network G that consists of a 
freeway network and a city street network. The freeway network is located 
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upstream and the city street network downstream, and these networks are 
connected by off-ramp nodes. In the freeway network, we assume that queuing 
congestion occurs, but flow congestion does not. In the city street network, on 
the other hand, we assume that flow congestion occurs, but queuing congestion 
does not. 
     The network G consists of a set of nodes N, and a set of directed links L. The 
node set N includes an origin node being the start of a user’s trip, and a 
destination node at which the trip is terminated. Each element of N (i.e., each 
node) is identified by a sequential natural number i, and each element of L (i.e., 
each link) is denoted by a pair (i, j) consisting of the upstream node i and the 
downstream node j. Each origin-destination (OD) pair is denoted by the pair (o, 
d) and W denotes a set of OD pairs.  
     We also assume that each link (i, j) in the freeway network has a bottleneck 
that is represented by a point queue model with constant capacity ijµ . The travel 
time to pass through the link (i, j) in the freeway network is constant ijc , since 
there is no flow congestion. In the city street network, on the other hand, the 
travel time to use the link (i, j) is given by a strictly monotone function )( ijij yc : 

0/)( >ijijij yyc ∂∂  where ijy  is the traffic flow per unit of time. We assume that 
the travel demand Q, with respect to trips per day, is a given constant. 
     We consider time-dependant traffic flow patterns within daily and day-to-day 
traffic flow dynamics. We then distinguish the day Tt ∈ from the time Ss∈  
within day t. Furthermore, the day t and time s are also identified by sequential 
natural numbers.  
     Each user makes a single trip per day from an origin (e.g., residential zone) to 
a destination (e.g., CBD) in the network. Each user chooses a destination arrival 
time and a path between the origin and destination so as to minimize his or her 
generalized transportation cost.  

2.2 TDM schemes 

The TBP can completely eliminate queuing congestion, but cannot eliminate 
flow congestion. We consider a hybrid scheme that combines the TBP with 
congestion pricing. We also consider the congestion pricing proposed by 
Sandholm [4] to alleviate flow congestion. 

2.2.1 Tradable bottleneck permits 
A road manager issues time-dependant bottleneck permits for all bottlenecks 
(i.e., links) in the freeway network to eliminate queuing congestion. We assume 
that the number of permits issued for each link for each time unit is equal to or 
less than the traffic capacity of that link in the network. This means that queuing 
congestion never occurs in the network under the TBP scheme. 
     The permits issued for each link (bottleneck) are offered for sale by the road 
manager. There are as many markets for trading permits as there are links, and 
each market is dedicated to trading the permits for that link. We also assume that 
the trading markets are perfectly competitive; that is, each agent acts as a price-
taker. 
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2.2.2 Congestion pricing 
A road manager imposes congestion tolls on the users for all links in the city 
street network to alleviate flow congestion. In standard congestion pricing, 
however, the road manager cannot determine appropriate tolls without having 
accurate user information. We thus consider the congestion pricing proposed by 
Sandholm [4]. The method of implementing this model is evolutionary in that 
congestion tolls are determined solely from temporal traffic flows. We refer to 
this scheme as “evolutionary congestion pricing” and give a precise definition 
thereof in Subsection 4.2 below. 

2.2.3 Multi-agent system 
To implement the hybrid scheme we consider a multi-agent system, in which 
vehicle-installed agent software chooses, on behalf of a user, an optimal path and 
arrival/departure times according to the user’s preferences, so as to minimize the 
generalized transportation cost. Each agent further deals with the cumbersome 
procedure in the trading markets for bottleneck permits.  

3 Socially optimal state 

This section defines the socially optimal state under the TBP with evolutionary 
congestion pricing, and shows the relationships between socially optimal and 
static equilibrium conditions.   

3.1 Dynamic socially optimal assignment problem 

In order to define the socially optimal state, consider the following optimization 
problem [P-1]: 
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where od

sq  is the OD traffic flow rate for arriving at the destination at time s , ij
sy  

is the traffic flow rate for arriving at link (i, j) at time s , γ  is a coefficient that 
converts travel time to a monetary equivalent, and sd  is the schedule cost of 
arriving at the destination at time s . Furthermore, Ω  is a feasible domain that  
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satisfies Eqs. (2)-(7). Equation (2) denotes flow conservation for OD flow rates 
and OD travel demands odQ . Equation (3) denotes flow conservation for link 
flows and link inflows from each origin. The constraints in (4) denote flow 
conservation at each node; that is, the conservation of the dynamic traffic flow in 
a network is represented as the equality of inflows and outflows at each node for 
each point in time. To formalize this, we let oij

sz ,  be the flow rate departing from 
link (i, j) at time s  from the origin o.  dk ,δ  denotes Kronecker’s delta (i.e., 1 if k 
= d, zero otherwise); NO(k) is the set of downstream nodes of the links incident 
to node k; NI(k) is the set of upstream nodes of the links incident to node k. 
Equation (5) denotes the First-In-First-Out conditions on each link. We assume 
that dynamic traffic flow in our model satisfies the First-In-First-Out property on 
each link (i.e., we assume that overtaking can be ignored). τ  denotes the 
departure time of link (i, j) for a user entering the link at time s: 

)( ij
s

ij ycs +=τ                                    (8) 
     Constraint (6) is the capacity constraint on each link and constraint (7) is the 
nonnegative constraint. 

3.2 Relationships between the social optimum and static equilibrium 

We show that the socially optimal state is equivalent to the static equilibrium 
under the TBP with evolutionary congestion pricing. Specifically, the optimal 
conditions for [P-1] are equivalent to Eqs. (2)-(8) and the static equilibrium 
conditions given below (proof: see Akamatsu [3]). 
1) Equilibrium conditions for the path choice: 
At equilibrium, no user can improve his or her own cost by changing the path 
choice unilaterally.  To formalize this, let oi

sπ  be the minimal travel cost to node 
i from origin o, and ij

su  be the transportation cost on link (i, j): 
)()( ij
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s
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where ij
sp  is the price of a permit for link (i, j) at the specified time s, and ij

sλ  is 
the congestion toll. Then the equilibrium condition is represented as 
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2) Equilibrium conditions for destination arrival time choice: 
At equilibrium, no one can improve his or her own generalized transportation 
cost by changing the destination arrival time unilaterally. The generalized 
transportation cost for a user arriving at time s is s

od
s d+π . Therefore, the 

equilibrium condition for the user’s arrival time choice can be expressed as 
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where ρ represents the minimum (equilibrium) generalized transportation cost. 
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3) Demand-supply equilibrium (market clearing) conditions in each link 
permit market: 
At equilibrium, if the price of a certain type of permit is positive, the quantity 
supplied equals the quantity demanded for that permit; for a permit whose supply 
quantity exceeds the quantity demanded, the price is zero. Note that, for each 
link (i, j) and each time s, the demand for a permit of that link at time s is equal 
to the inflow rate ij

sy . 
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     The socially optimal state (or its equivalent, the equilibrium state) is defined 
as described above, but the processes for achieving the socially optimal state 
have not yet been clarified. In the following sections, we consider the day-to-day 
dynamics of traffic flows and prices, and show that the multi-agent system can 
achieve the socially optimal state under the proposed scheme. 

4 Price dynamics under the proposed scheme 

4.1 Price dynamics in the permit trading markets 

We assume that the dynamics of the price of bottleneck permits in the trading 
markets is described by tâtonnement dynamics. The price of a permit on day t is 
adjusted so as to clear the excess demand for that type of permit.  
     Let Ds

ij  be the demand for a permit for link (i, j) at time s. On the other hand, 
the supply (upper bound) of a permit for link (i, j) at time s is a constant µ ij . 
Thus the excess demand on day t is denoted by (Ds

ij (t) − µ ij ) . Then the permit 
price ps

ij (t) is adjusted as follows: 
ps

ij (t +1) = max .[(Ds

ij (t) − µ ij ) ⋅K + ps

ij (t), 0]         (13) 
where K is a positive constant. 

4.2 Evolutionary congestion pricing 

To alleviate flow congestion, we introduce “evolutionary congestion pricing” 
proposed by Sandholm [4]. The method of implementation is evolutionary, 
requiring that the road manager sets congestion tolls using temporal information 
(i.e., the traffic flow pattern that occurs on day t) as follows: 

ij
s

ij
s

ijij
s

ij
s ytyctyt ∂∂γλ /))(()()1( ⋅⋅=+             (14) 

     In his study, Sandholm [4] considered traffic flows in a network with flow 
congestion and proved that the traffic flow pattern under the scheme eventually 
converges to a socially optimal state. The micro behaviour of each agent was, 
however, not clarified. We, therefore, consider an agent’s micro behaviour under 
evolutionary congestion pricing, and derive the day-to-day dynamics of traffic 
flows and prices. 
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5 Agents’ behaviour 

We consider that each agent plays a game (i.e., the trip) on each day t. Let the 
combination of path and destination arrival time {r, s} be the strategy of the 
agent, and {R(o, d), S} be the set of strategies available to the agents including 
the OD pair. The payoff (i.e., generalized transportation cost) of the strategy {r, 
s} depends on the total number of agents choosing the strategy. 

5.1 Perturbed best response 

For the agents’ behaviour, we consider the perturbed best response model which 
is a rule referring to the traffic flow pattern that occurred on day t. In this case, 
the road manager only counts the traffic flows that occurred on day t, and 
informs the agents about this data. 
     In the perturbed best response model that is popular in evolutionary game 
theory, each agent makes his choices after the payoffs have been subjected to 
random shocks. The payoff of strategy r(o, d) is defined as the sum of the link 
costs included on path r(o, d): 

U r (o,d ) (t) ≡ − us

ij (t) ⋅δ ij,r (o,d )
ij∈L

∑                   (15) 

where ),(, dorijδ  is a typical element of the path-link incidence matrix for the node 
pair (o, d): the value is 1 if link (i, j) is on the path r connecting the OD pair (o, 
d); otherwise, it is zero. Each agent chooses a strategy so as to maximize the 
payoff defined as Eq. (15), adding to the random disturbance term. 
     We obtain the strategy by solving a two-stage (hierarchical) choice problem, 
in which the destination arrival time s (the upper-level choice) and the path r (the 
lower-level choice) are chosen separately. More specifically, agentα  first solves 
the lower-level problem of the path choice for a given arrival time s; he then 
obtains the route choice rs

α (t +1)  and the maximum value π s

α (t)  condition on 
arrival time s: 

−π s

α (t) = max .
r∈ R (o,d )

Us

r (o,d ) (t) +ξ r ( o,d )
α (t)                      (16) 

rs

α (t +1) = arg.max .
r∈ R (o,d )

Us

r (o,d ) (t)+ξ r (o,d )

α (t)           (17) 

By using this maximum choice function, the upper-level problem of the arrival 
time choice is reduced to 

sα (t +1) = arg.max .
s∈S

− π s

α (t) − ds +ε s

α (t)                  (18) 

where ξ r (o,d )
α  and ε s

α  are random disturbance terms: each agent chooses a mixed 
strategy on each day t. 
     Furthermore, we assume that ξ r (o,d )

α  and ε s

α  are i.i.d. with the Gumbel 
distribution. According to a random utility model, the choice probability ls

r (o,d )  of 
the path and the choice probability hs  of the arrival time are formulated as the 
following nested logit model: 
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where )(tod
sπ  is the expected utility of the path choice, andθ  and η are logit 

parameters. Using these choice probabilities, the choice probability of agentα ’s 
strategy bs

r (o,d )  is denoted by 
bs

r (o,d ) (t) = ls

r (o,d ) (t) ⋅hs (t)                           (21) 
     This means that the agents of the same OD pair have the same choice 
probability. 
     When each agent chooses a strategy according to the rules given above, there 
is the possibility that the demand of link (i, j) at time s exceeds the supply µ ij : 
the permit is sold out. In that case, the road manager assigns the permits to the 
agents according to a rule proposed by Kikuchi et al [5]. By following these 
rules, all agents eventually select strategies, and all the capacity constraints are 
met.  

6 Convergence of day-to-day dynamics 

6.1 Expected changes in day-to-day dynamics 

In this section, we consider the day-to-day dynamics, for each arrival time, of a 
path flow f s

r (o,d ) (t)  and a permit price ps

ij (t) . These dynamics are stochastic, so 
the first step in their analyses is to determine their expected motion.  
     Let X(t) ≡ [ f (t) p(t)]T  denote the combination of the path flow and the permit 
price. If X(t)  is a state x ≡ [f p]T , the payoff U  and the choice probability b 
are denoted by U(t) = U(x) , b(t) = b(x) . In this case, the path flow can be 
described by 

E[f (t +1)− f (t) X(t) = x] = ˆ F (x)− f             (22) 

where ˆ F s
r (o,d ) (x)  is the expected number of agents who choose strategy {r, s} in 

state x .  
     When the road manager assigns the permits to the agents according to the rule 
proposed by Kikuchi and Akamatsu [5], the expected number of agents choosing 
strategy {r, s} is determined by solving the following optimization problem      
[P-2]: 

ˆ F (x) = arg max
ˆ f ≥0

.UT (x)ˆ f − ˆ q T (ˆ f )v L (ˆ f ) −QT v H (ˆ f )               (23) 

subject to i) flow conservation for OD flow rates and OD travel demands, ii) 
flow conservation for path flows and OD flows, and iii) capacity constraints on 
each link. v L and v H  denote the entropy terms for the lower-level choice and 
upper-level choice, respectively: 
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If a link capacity constraint is ineffective, ˆ F  is equivalent to the following B: 
Bs

r (o,d ) (x) = Qod ⋅bs

r (o,d ) (x)                       (26) 
     In contrast to Eq. (13), the expected change in the permit price is denoted by a 
function that is governed only by the state x : 

E[p(t +1) − p(t) | X(t) = x] = max .[( ˆ D (x) −µ) ⋅K,−p]   (27) 
where ˆ D ij (x)  is the expected demand for a permit on link (i, j) computed by 
traffic flows and permit prices on day t: 

ˆ D s
ij (x) = Bs
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     In order to discuss convergence of the dynamics, we derive continuous time 
version expected changes corresponding to the discrete time expression of Eqs. 
(22) and (27). We assume that the frequency of changing strategies by each agent 
is the same and constant. Under these assumptions, the expected change of 
X(t) can be described by a continuous time Markov process: 
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where κ f  and κ p  are positive constants, and H ij  is the function 
H s

ij (x) = max[ ˆ D s
ij (x) − µ ij ,0]                   (30) 

6.2 Properties of the dynamics 

From the above, we obtain the following proposition for a rest point defined as 
0xXX == ])(|)([ *ttE :  

Proposition 1: Consider the Markov process denoted by Eq. (29). If the 
parameter θ  approaches infinity, a rest point x*  is equivalent to the resource 
allocation in the sense that the total transportation cost in the network is 
minimized as denoted by problem [P-1]. (Proof: see Kikuchi and Akamatsu [5]) 
     On the surface, if X(t)  converges, this proposition states that equilibrium 
traffic patterns coincide with the socially optimal state. 
     To state our convergence result, we consider a continuous differentiable 
function as follows: 
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where 
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ln exp[θUs
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s∈S

∑            (36) 

     A function that is Π(x)  added to a constant value is a strict Lyapunov 
function for dynamic (29) (see the detailed proof by Kikuchi and Akamatsu [5]). 
By stochastic approximation theory (see, Benaïm [6]), we obtain the following 
proposition: 
Proposition 2: Under the rule of the agents’ behaviour defined in Section 5, the 
dynamics of the path flow f (t)  and the permit price p(t)  converge globally. 
     The discussion above shows that, under the rule of the agents’ behaviour in 
this paper, the traffic patterns can globally converge and the equilibrium resource 
allocation is equivalent to a socially optimal state. 

7 Conclusion 

In this paper, we proposed a multi-agent system for implementing tradable 
bottleneck permits. The aim of such a system is to achieve a socially optimal 
state in which the total transportation cost is minimized through decentralized 
behaviour of the agents. As a concrete step in designing the proposed system, we 
first defined the micro behaviour of the agents. We then derived day-to-day 
dynamics of aggregate variables (flows and permit prices) from the micro 
behaviour. By analyzing the macro dynamics, we proved that the mean dynamics 
of aggregate variables globally converge to a socially optimal state. 
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