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Abstract

The Petri net formalism is a powerful tool to model and analyze discrete
event systems. The dynamic behavior of traffic signals is a discrete model
and is one of the most important and effective methods of controlling traffic
at intersections. In this paper, Petri nets are applied to model a network of
intersections and the formal proof is based on the sequent calculus of Linear
Logic. The approach can prove that unsafe states are not reached, and that
desirable states are reached. This is done using the equivalence between
Petri nets reachability and the proof of a set of sequents in Linear Logic.
The approach is illustrated by an example of a network of intersections
controlled by traffic signals.

1 Introduction

Traffic control in urban roads is a major area in which Intelligent Trans-
portation Systems approaches can be applied. Traffic signals are one of the
main approaches to control an intersection. They act regulating, warning
and guiding transportation with the purpose of improving safety and effi-
ciency for pedestrians and vehicles. Among the main advantages of traffic
signals are the flexibility of the signaling scheme, the ability to provide pri-
ority treatment and the feasibility of coordinated control along streets. But
when not well-designed, traffic signals may lead to excessive delays when
cycle lengths are too long and increase the frequency of collisions.

Petri nets [1] are a common tool applied to design, simulate and analyze
discrete event systems, such as traffic signals. Some of the advantages are
the graphical representation, the possibility of analyzing properties and the

 © 2007 WIT PressWIT Transactions on The Built Environment, Vol 96,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Urban Transport XIII: Urban Transport and the Environment in the 21st Century  289

doi:10.2495/UT070281



ability to represent aspects such as concurrency, synchronization and shared
resources.

There are several examples in the literature of the application of Petri
nets to design and analyze traffic signals. In [2], it is described an approach
via programmable logic controller and Petri nets to control urban traffic
signals. In [3], the purpose is to evaluate the performance of different traffic
signals by means of Petri nets. In [4], continuous Petri nets are applied to
obtain realistic and compact models for traffic systems. In [5], Petri nets are
used to model the control of signalized intersections, and the good properties
of the system are evaluated by means of invariant analysis and simulation.
In [6], timed Petri nets are applied with the aim of minimizing congestion
situations via a traffic-responsive signaling control procedure.

In this paper, a subnetwork of traffic signals is modeled by Petri nets with
time associated to transitions. From the model, scenarios are extracted and
analyzed with Linear Logic, which is an analysis tool for Petri nets. The
approach allows to use symbolic dates instead of numeric ones. As a result,
some important properties are formally proved.

2 Rules for traffic signals design

A road intersection can be defined as the general area where two or more
roads join or cross, including the roadway and roadside facilities for traffic
management [7]. Traffic signals are an important mechanism applied to
solve intersections conflicts and regulate traffic flow. To correctly control
intersections, traffic signals design must take care of efficiency and speed,
but also safety and security. Figure 1 shows a small network of roads with
two intersections: I1 and I2. The main road has a great flow from B to D,
and A and C are non-priority roads. There are sensors in the main road
(from B to D) to detect the first of a platoon of vehicles after a green for
B in intersection I1 and allow a green in intersection I2. This approach is
used to try to improve the offset in such a way that as the first vehicle just
arrives at the next intersection in the network, the signal controlling of this
intersection turns green. This ideal offset is difficult to achieve when pre-
determined offsets are defined. The risk is that if the platoon of vehicles goes
slower or faster than it is expected, then the result will inevitably be sub-
optimal. When considering sensors to detect the first vehicle of a platoon,
although risks still exists, it is considerable lower.

Some important rules (non-exhaustive) for the proper functioning of traf-
fic signals are [8]:

• the traffic signal must not allow the green state to two conflicting road
sections simultaneously;

• each traffic signal must follow a defined sequence of active color lights,
normally from green to yellow and red, and then backing to green;

• the right to use an intersection has to be given to all sections.
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When reasoning on a network of intersections, three other rules are impor-
tant:

• any user in the intersection should not wait for more than a maximum
service delay, otherwise the user may presume that the traffic signal is
not functioning, which can lead to non-secure decisions by the users,
or the formation of big queues.

• the offset is ideally designed in such a way that as the first vehicle just
arrives at the next intersection in the network, the signal controlling
this intersection turns green.

• the length of green time for each road section can be different, depend-
ing on section priority, for instance.

The UML use case in figure 2 shows a context diagram for traffic signals
controlling a network of intersections and considering the rules above. The
actors Sensor and Traffic Signal are responsible to realize the use case Con-
trol Phases. In order to correctly and efficiently control the network, the
safety and performance rules must be applied.

Each use case is a set of actions performed by the system, which yields an
observable result for the involved actors. The dynamic behavior of the use
cases are designed with Petri nets in the approach presented in this paper.

Figure 1: Subnetwork example.

Figure 2: System Traffic Signal Use case.
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3 Petri nets modeling

Petri nets [1] are a graphical and mathematical tool applicable to a large
variety of systems in which concurrency, dynamic behavior, synchronous and
asynchronous communication, and resource sharing have to be modeled. As
a graphical tool, with simple but powerful primitives, Petri nets are useful as
a visual communication aid. As a mathematical tool, Petri nets can formally
prove a set of desirable properties of systems and evaluate performance
aspects.

Formally, a Petri net is a 5-tuple N = (P, T, I, O, M0), where P is a finite
set of places; T is a finite set of transitions; I is an input function that
defines directed arcs from places to transitions; O is an output function
that defines directed arcs from transitions to places; and M0 is the initial
marking. A marking is an assignment of tokens to the places of a Petri net.
For the analysis of Petri net models, the concept of marking is fundamental.

There are several advantages for using Petri nets in the design of com-
plex discrete event systems. The graphical representation is composed of few
basic elements, very simple to understand. As a formal tool, Petri nets allow
to perform a formal check of desirable properties. The formal analysis of a
Petri net model can reveal whether the model is reliable or not. For instance,
with reachability analysis it is possible to find out whether an unsafe state
that could cause an accident can be reached. Petri nets have mechanisms to
provide important aspects for the design of large and complex systems, such
as abstraction, hierarchical design and modularity. Transitions and places
can represent sub-nets, allowing the modeling in several levels of detail. In
addition, it is feasible to construct large models relating smaller Petri nets
to each other. For instance, the fusion of common places, representing the
same resource in two different Petri nets. Finally, some common character-
istics of discrete event systems that are present in a network of intersections
controlled by traffic signals are easily represented by Petri nets, such as
shared resources, synchronization, time aspects and sequence of events.

The road intersections of the previous section are modeled as the Petri
net in figure 3. Intersections I1 and I2 are shared resources for the road
sections, and can be well represented in the Petri net model as the I1 and
I2 places. The states are represented as places and the transitions separate
one state from another. For instance, GA represents a green for section A,
YA a yellow and RA a red. The firing of a transition allows state changing.
A token in a place represents the current state of the traffic signal (TLS).

The proposed Petri net has a deterministic duration time associated to
each transition [9]. This duration, in the model, corresponds to a time delay
before the firing of a transition, indicating the duration associated to a
specific state. For instance, in figure 3, associating a duration of 20 seconds
to transition t2 means that the transition can only be fired after 20 seconds.
As a matter of fact, a green-time of 20 seconds is given to section D.
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Figure 3: Global Petri net model.

4 Analysis with Linear Logic

Classical logic deals with eternal truths: once a fact is used to prove another
fact, the first fact is still available. When dealing with resources that can be
consumed and produced, this concept of eternal truth is not possible any-
more. It’s natural that resources can be counted, but this is not possible in
Classical Logic. Linear Logic was then proposed by Girard [10] as a restric-
tion of Classical Logic in order to deal with resources. The propositions in
Linear Logic are resources that can be produced or consumed. A deduction
represents a state changing in which resources are consumed in order to
produce other resources.

As Petri nets deal correctly with the notion of resources and state chang-
ing, some first results appeared on combining Petri nets and Linear Logic
[11,12]. Within Linear Logic, the places of a Petri net are considered resources.
The production and consumption of instances of a resource corresponds to
producing/consuming tokens in the associated place when a transition is
fired.

In this paper, the translation from Petri nets to formulas of Linear Logic is
done as in [13] and is given as follows. An atomic proposition P is associated
with each place of the Petri net. A marking M is represented only with the
connective ⊗, ie., a marking is represented by M = P1 ⊗ P2 ⊗ · · · ⊗ Pk

where Pi are places with tokens. A transition is an expression of the form
M1 � M2 where M1 and M2 are markings. In fact, for the Petri net these
are the equivalent Pre and Post functions of the transition. The connective
� is the linear implication.

A sequent Mi, ti � Mf represents a scenario where Mi and Mf are respec-
tively the initial and final markings, and ti is a set of transitions. The � is a
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Linear Logic primitive symbol. It divides the sequent into the left part (pre-
misses), and the right part (conclusions). The sequent is proved by applying
the rules of the sequent calculus. To prove a sequent is to show that it is
syntactically correct. The proof is constructed bottom up, and stops when
all the leaves of the tree are identity sequents, such as P � P .

Within Linear Logic, the reachability problem is in fact the problem of
sequent proving. This is possible because there is equivalence between the
proof of Linear Logic sequents and the reachability tree in a Petri net [14].
Linear Logic has been chosen because it allows to accurately characterize
state changes and production/comsumption of resources. It is also possi-
ble to evaluate scenarios with time associated to places or transitions in
the Petri net. This allows the possibility of working with symbolic dura-
tions instead of real numeric ones, which can improve simulation. Another
advantage is that it is possible to derive specific scenarios directly from the
Petri net without constructing complete reachability trees [15]. As a direct
consequence, Linear Logic can be considered as an analysis tool for Petri
nets. Linear Logic rules applied to construct the proof tree are explained in
the next section.

4.1 Linear sequent calculus and proof tree

In this paper, the fragment Multiplicative Intuitionistic Linear Logic is used.
This fragment contains the multiplicative connective ⊗, representing accu-
mulative resources, and the linear implication �, representing causal depen-
dency. There’s no negation and the meta connective “,” is commutative. The
rules applied are:

F � F
id

Γ, F, G � ∆
Γ, F ⊗ G � ∆

⊗L

Γ � F ∆ � G

Γ, ∆ � F ⊗ G
⊗R

Γ � F G � ∆
Γ, F � G � ∆

�L

In this paper, the proof tree is build as follows [13]:
• the rule ⊗L is applied repetitively to separate a marking into atoms,

which allows the application of the �L rule.
• the �L rule expresses a transition firing. It generates two sequents.

The left sequent represents the tokens that were consumed by the
transition firing. The right sequent represents the new tokens produced
by the transition firing.

• the rule ⊗R transforms sequents of the form P1, P2 � P1 ⊗ P2 into
two identity ones P1 � P1 and P2 � P2, which are proved leaves.

4.2 Scenarios

As an analysis tool for Petri nets, Linear Logic can be applied to give some
important results about the models. The purpose in this paper is not to
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consider all evolutions of the Petri net, but reason on specific scenarios.
The same approach can be easily applied to other scenarios.

4.2.1 Reachability of an unsafe state
The considered scenario is the one in which an unsafe state is reached, such
as the reachability of simultaneous greens for two conflicting road sections,
as for instance, A and B in figure 3. By design, places GA and GB, meaning
respectively green for section A and B, are in mutual exclusion. From the
Linear Logic point of view, this is equivalent to prove that the state GA⊗GB
is not reachable from another state. What is to be proved is that from the
initial state (RA ⊗ RB ⊗ I1) the final state GA ⊗ GB is not reached. The
equivalent sequent is RA⊗RB⊗ I1, t7, t4 � GA⊗GB. This sequent states
that from red states for both sections, it will be allowed green for section A
and B simultaneously.

RA � RA I1 � I1 ⊗R

RA, I1 � RA ⊗ I1 GA, RB, (I1 ⊗ RB � GB) � GA ⊗ GB

RA, RB, I1, (I1 ⊗ RA � GA), t4 � GA ⊗ GB �L

RA, RB, I1, t7, t4 � GA ⊗ GB ⊗L

RA ⊗ RB, I1, t7, t4 � GA ⊗ GB ⊗L

RA ⊗ RB ⊗ I1, t7, t4,� GA ⊗ GB

From the proof tree generated, it is clear that the final state is not reached,
as there’s no further Linear Logic rules that can be applied to transform
the branch GA, RB, (I1 ⊗ RB � GB) � GA ⊗ GB of the proof tree into
identity sequents. The same reasoning can be done firing transition t4 before
transition t7. In this case, a similar tree is generated with the same final
result.

4.2.2 Reachability of a desirable state
An important scenario is to know if it is possible to have simultaneous green
for sections B and D, and for how long this state will remain. Knowing
this information, more accurate off-line plans can be generated and can be
evaluated if this approach can really improve traffic flow. From red state
for sections B and D, it has to be proved that a situation where there are
greens for both sections is reached.

The communication places and the sensors S1 and S2 in the global Petri
net of figure 3 acts in practice as a delay, indicated by the date D. A simul-
taneous green for sections B and D is possible after the firing of transition
t1, which leads to green for section D, and before the firing of transitions
t5 or t2, which leads to yellow states.

Using symbolic dates generated after the construction of a proof tree, the
first yellow will be allowed after date d4 + d5 (production of a token in YB)
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or after date d4 + d1 + d2 + D (production of a token in YD). The green
for section D starts at date D + d4 + d1. The simultaneous green SG starts
after the green is allowed to section D and ends before the first yellow is
produced for section B or D. The equation with symbolic dates is:

SG = minimum(d4 + d5, d4 + d1 + d2 + D) − (D + d4 + d1)

For instance, considering d4 = d1 = D = 5, d5 = 20 and d2 = 40, then
SG = 10, which mean that there will be simultaneous green for 10 seconds.
With other values, such as d4 = d1 = 5, D = 10, d5 = 45 and d2 = 35, SG =
30. Several other values can be simulated using these symbolic dates. Due
to the possibility of modularity design with Petri nets, the same evaluations
can be done for several sub-networks, and other Linear Logic expressions
generated. The real numeric values can then simply be substituted into the
symbolic ones. With this approach, it is not necessary to construct new
reachability trees for every different set of transition times.

5 Conclusion

The paper presented a technique to model traffic signals with Petri nets.
A subnetwork of traffic signals is modeled with Petri nets, and important
scenarios are extracted and analyzed with Linear Logic. This is possible
due to the equivalence between Linear Logic proofs and the reachability of
Petri nets. With the symbolic dates, several simulations can be done just
by changing real numeric values into the symbolic ones. As an analysis tool
for Petri nets, some results about properties of the model can be done with
Linear Logic proof trees.
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