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Abstract 

During construction of the Prague subway in the suburbs, a technology of deep 
slope excavation has been applied. Where excavation is cheaper in comparison to 
driving is expected, this technology is usable when appropriate conditions are 
expected on site. From the point of view of the environment, the steeper the 
slope is, the loss of possible smaller building lots is less. This means that during 
the construction of the underground structure, the construction of residential 
buildings and civic amenities can always be in progress in larger areas. 
Moreover, the excavation of slopes is cheaper the steeper the slope is. The 
optimization of the slope to be as steep as possible starts with a well known trick 
given by Prochazka and Koudelka (2001). For given internal parameters an 
optimal slope can be obtained. On the other hand, if some internal parameter is 
unknown, it can be a design parameter of the optimization. Similarly, for vertical 
slopes, the technique of nailed soil can be applied. The optimization in this case 
is attained from the professional program PLAXIS. This program can be 
connected with scale modeling on physically equivalent materials. Application to 
completed construction of one part of the Prague subway will be carried out. The 
material parameters are given, the process of construction is known, so that a real 
comparison can be made. The slope of approximately 50m height belongs to an 
exception in the area of applications to the subway construction. Higher slopes 
are known from tailing dams (deposits of open pit mines), for example, attaining 
up to 80m. In the latter case, measurement equipment can be installed in the 
slope to observe its behavior. This is not the case in our study; the slopes have to 
be designed in the correct way in order not to fail.  
Keynotes: deep slopes, damage at interfacial zone, penalty formulation. 
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1 Introduction 

In this paper a problem of minimum stability of deep slopes is solved. In the 
past, certain approaches have been applied to this problem. One of the most 
reliable, but simple, is that published in [1]. This procedure enables engineers on 
site to decide very quickly on how the slope will behave after getting better 
information on its geological properties. We shortly describe this process in this 
text and use results from that for comparing them with more precise but much 
more complicated numerical procedure. The procedure, which we use in this 
paper, will start with optimization based on the inverse variational principles, 
[2]. Note that this powerful tool has successfully been applied to concrete 
problems in [3-5]. In all these cases the optimization can be considered as non-
constrained, only boundary conditions were fulfilled. In our case not only 
boundary conditions, but also unilateral generalized conditions are used.   
     The slope is divided into two parts: the stable and the unstable part. The first 
behaves elastically, as it is well known that the damage behavior is concentrated 
into a narrow zone in which the slip occurs. The unstable part is simulated by 
springs; their behavior is also elastic. The springs enable us to come over to 
penalty-like formulations of the problem. 
     The generalized Mohr-Coulomb interfacial conditions are taken into account 
including the tensile stresses on the interface unstable-stable part of the slope to 
be excluded. The loading is introduced in the classical way: the volume weight is 
introduced. 
     The inverse variational principles are naturally connected with finite element 
method, as shown by Seguchi and Tada [4] and by Tada et al. [5]. But, the FEM 
is less suitable for the problems involving the optimal shape of boundary because 
of the division (in any case compulsory using the FEM) of the domain, while the 
boundary element method seems to be more suitable for such problems. On the 
other hand, the direct connection with the variational principles is not viewable 
at first sight. This difficulty will be overcome by the application of Clapeyron’s 
theorem. In the paper, the trick published by Banerjee et al. [6] is developed, 
concerning the expression of boundary energy in terms of boundary variables.  
      An example shows a possibility of applications of the theory.  

2 Motivation 

In utilizing the second urban level in urban agglomerations and their 
neighborhood tendency to realization and optimization of techniques used is 
observed. The primary effort is seen in the area of maximum decreasing the 
construction investment and shorting the budget.  The tunneling seems to be very 
expensive in comparison with an open pit excavation and, moreover, the pit 
should posses its slope as steep as possible (of course, not to avoid the bearing 
capacity).  
     Other reasons appear in conjunction with building tunnels for subways. The 
underground space should involve the second underground traffic level (cars, 
trains, underpasses for pedestrians) and connecting market rooms, garages, 
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stores, and also nontraditional use of underground space for sport reasons. There 
is a large number of other issues which can be positioned in underground. From 
this standpoint the underground space is valuable and the entire height from the 
level of tunnels to the terrain should be exploited. The above said arguments 
facilitate the usage of open pit technology, if possible to apply.  
     The pits can profitably be used in the suburb areas where the old buildings are 
not dense and a construction of new development is expected. This was the case 
of one part of Prague, for which the study presented in this paper is devoted.  
     Optimal choice of construction engineering is dependent on many factors, 
like geological conditions, hydrogeological system, a complex design of the 
intended structure, traffic communications, utility network, a character of the 
development in the neighborhood, etc. The main criterion of such a process is the 
rate of construction and, of course, safety during the construction. In order to 
fulfill all these criteria pile walls, sheet-pile walls, steel walls, concrete walls, 
and others are used. The most promising appears to be the slope. In geological 
conditions where the slopes can be steep, preference is given to this kind of 
engineering.  
     This technique is the less used but the most efficient when: 

- no estate is present in the site 
- the necessary depth is shallow 
- the deep level of underground water 
- the stability is proved in a reliable way 

     Very accurate method of verification of stability of slopes is described in this 
paper. The reliability consists in using two methods with proved eligibility. The 
first, Apriori Integration, Method, [1], gives the base information on behavior of 
the slope and the second is very fast numerical method based on finite elements 
and small movement of slip curve, or surface, from the starting shape according 
to [1].   

3 Preliminary considerations 

Consider domain Ω with its boundary Γ. The internal energy can be expressed 
as: 
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where ijσ≡σ  is the stress tensor, ijε≡ε  is the strain tensor, iu≡u  is the 

displacement vector, ip≡p is the traction vector defined on the boundary, 

in≡n  is the outward unit normal to the boundary Γ.  Symbols (.,.) and [.,.] are 
respectively internal and external energies. The equation (1) verifies assertion 
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that external and internal energies are equal. If necessity of identification of 
domain V appears, we write (.,.)V  instead of (.,.) and if the boundary is identified 
by S then [.,.]S  is written rather then [.,.]. 
     The classical principle of minimum potential energy requires that  
 

minimum],[),(),(
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where ( ) ))(),((, uεuσuu =a and b is the volume weight vector. The principle                              
of minimum complementary energy is written as 
 

minimum],[))(,(
2
1

→− upσεσ                                   (3) 

 
 where barred quantities are given, linear Hooke’s law  
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is fulfilled, statical boundary conditions and kinematical equations are obeyed. In 
the classical version the principle of minimum potential energy depends only on 
the choice of the displacement field and prescribed shape of the domain and 
boundary and given tractions, the principle of minimum complementary energy 
on the same shape and on prescribed boundary displacements.  The idea of the 
inverse variational principle consists in the fact that also the shape of the domain 
can change. Using this assumption, one should discover what happens, if such an 
assumption is accepted.  
     Splitting the boundary Γ  into two disjoint parts: Γu  where the displacements 
are prescribed and Γp with prescribed tractions, and using (1), the functionals in 
(2) and (3) to be minimized turn to the form: 
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After easy algebra the last requirements lead us to  
 

1 1 1    [ , ] [ , ] ( , ) [ , ] minimum
2 2 2

1 1 1            [ , ] [ , ] [ , ] minimum
2 2 2

u p p

p u u

Γ Γ Γ

Γ Γ Γ

+ − − − →

+ − − →

p u p p u b u p u

p u p u u p u
 

 

412  Urban Transport XII: Urban Transport and the Environment in the 21st Century

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 89,



As the second terms in the latter equations disappear ( uon   Γuu = and 

pΓon   pp = ), we eventually get 
 

1 1             [ , ] ( , ) [ , ] minimum
2 2

1 1                  [ , ] [ , ] minimum
2 2

u p

u p

Γ Γ

Γ Γ

− − →

− + →

p u b u p u

p u p u
                    (6) 

 
The first condition in (5) and (6) is fulfilled for each admissible u and the second 
for all admissible p .  
     Since b is given function of position, from the primary principle (61) it 
follows that for fixed Γp the minimum strain energy function is attained along the 
boundary Γu for which the minimum of the functional is attained. Similarly, from 
the second (complementary) principle (62) we get minimum complimentary 
energy along such Γp for which the functional reaches its minimum. 

4 Formulation of the problem 

In the above explanation we did not mention one important fact. The solution of 
the optimization problem has to be fulfilled under additional condition, otherwise 
no solution exists. In terms of the inverse variational principles constant volume 
of the optimized domain is assumed.  
     The problem can then be formulated as:  Let the displacement field u be a 
solution of a partial differential equation (or, alternatively, u is a solution of a 
variational principle) in the domain Ω. Let E(u, Ω) be a real function of u and Ω. 
The problem of searching for optimal shape consists of finding such a domain 
from a class O of admissible functions, which minimizes E. Note that in the 
problem of slope stability O is the class of domains with constant measure (in 2D 
area, volume in 3D). It may symbolically be defined as 
 

}0),();,(min{ =ΩΩ uu AE                                      (7) 
 
where A is an operator which for each O⊂Ω uniquely determines the 
displacement field u. 
     One of reasonable and practical forms of requirements of designers is an 
assumption of minimum complementary energy of a structure subject to the 
volume weight. Such a problem may be formulated in terms of inverse 
variational principles. In order to ensure the correctness of this formulation, 
additional constraint conditions have to be applied. As above said, we assume 
the constant volume of the moving part of the slope under consideration; this is 
one of the main features of the inverse variational principles. 
     In other problems other constraints may be applied. Even the C defining the 
measure of the domain may be made free (no longer constant). Then more 
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complicated formulation is expected, involving C as an additional variable in the 
principle. A typical application of that kind is to the slope stability problems.  
    The inverse variational principle based on the principle of minimum potential 
energy constrained by a constant volume of the moving part of the slope can be 
written in the following form, see (2): 
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where λ is Lagrange multiplier.  
     Let us introduce finite elements Ωi and approximations of the displacements 
on Ωi as 
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where Uj  denote degrees of freedom of the problem. In the standard way, 
substituting (9) to (8), one gets 
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     Our aim will now be to formulate the area of the domain by means of its 
corresponding boundary. This can be done in many ways. For example, suppose 
the polygonal shape of the structure under study, approximating the moving part 
of the slope, where the edges of the polygon are created by boundary elements. 
One can choose some fixed point P (pole) and connect it with each vertex of this 
polygonal boundary. In this way we obtain N  triangles Tk, k = 1,...,N, where N is 
the number of vertices. Since ΩΩ

Ω
 measd   =∫ , i.e. measure of the domain, this 

measure may then be written as 
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where meas (Tk) stands for the algebraic measure of Tk, k = 1,...,N. The situation 
is illustrated in Fig. 1. Determination of the area of any triangle is very simple 
using vertex coordinates. The triangles their edges are denoted in Fig. 1 as 
positive are added (with the sign plus) and the triangles with edges denoted as 
negative are subtracted (sign minus) in the sum (11). The situation is clear from 
Fig. 1, where a typical area is calculated. 
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Figure 1: Calculation of the area of a domain. 

      Now define the shape variables sk, k = 1,...,M. Taking account of the above 
arguments, the discretized inverse variational principle is formulated in the 
following manner: 
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where s = {s1,s2,...,sM} is the vector of shape variables.  

5 Euler’s equations 

The stationary requirement leads us to differentiation of Π  by Uk and to the well 
known expression for finite elements: 
 

      , FUK =                                              (13) 
 

where K is the stiffness matrix of the system, symmetric and banded. The vector 
U involves values of approximations of displacements at degrees of freedom; F 
is the vector of influences of external forces, i.e. of volume weight, in our case.  
     Since K is dependent of the shape parameters s, we also can differentiate by 
sl, l = 1,...,M, to get the extreme of the potential energy constrained by constant 
measure of the admissible domain: 
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     Equation (15) requires El to hold its value for any l, which is equal to the same 
constant -λ. In other words the optimal shape of the trial body will be reached 
when the strain energy density will be the same at any point on the “moving” 
boundary of the slope under trial. For this reason it is assumed that the body of 
the structure should increase its area (in 3D its volume) at the nodal point l of the 
boundary, El in which is larger than the true value of -λ, whilst it should decrease 
when El is smaller than the right -λ. As, probably, we will not know the real 
value of -λ apriori, we estimate it from the average of the current values at the 
nodal points. 
     Since El, l = 1,...,M, show large differences in their values, the logarithmic 
scale were proposed by Seguchi and Tada in [4]. The computational procedure 
follows this idea. 
    The variation by λ completes the system of Euler’s equations: 
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6 Application to a real problem 

In order to show the results of the algorithms, one concrete example is 
considered. Relatively high values of the geomechanical parameters are taken 
from a real site conditions: E = 400 MPa, ν = 0.27, the cohesion is 10 kPa and 
thangent of the angle of internal friction is 0.33. The slope of 450 was assessed. 
The starting area of 2D problem was considered 180 m2. According to [1], the 
slip curve should meet the toe of the slope. The distribution of contact 
displacements for bonded slip curve and movement on the contact after 
introducing Mohr-Coulomb conditions are depicted in Fig. 2. The magnitudes of 
displacements are much larger in normal direction at the bottom of the slip curve 
and are suppressed in the case of slip admission.  
     The optimal slip curve was attained for the area 221 m2 of the domain Ω. The 
original share (180 m2) and the final are compared in Fig. 3. It is obvious that the 
difference of shapes of both slopes is very small. This is an impact of very good 
estimation of the starting shape due to [1].  
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     The safety margin s can be defined in the following way: Denote the part of 
the contact boundary where slip occurs (shear damage) as Γslip then  
 

C

slip

 meas
 meas

1
Γ
Γ

−=s                                                    (17) 

 
where ΓC is the entire boundary and meas is the length. If there is no shear 
damage on the contact boundary, the safety margin is one and if slip part attains 
zero, the safety margin is also zero. Note that in our case the safety margin is one 
and it is 0.8 for the slope of 590, which was also considered as the optimal.  
 

 
Figure 2: Distribution of displacements on the contact in initial state for 

bonded and slipped case. 

 

 

Figure 3: Initial and optimal shape of the slip curve and movements on the 
optimal slip curve. 

7 Conclusions 

Theoretical background and application of inverse variational principles to the 
stability of real slopes, which was necessary to assess in a suburb part of urban 
area of the capital Prague. In this paper it was shown, what is the meaning of 
optimal slip curve when using the inverse variational principles.  It has been 
proved that the optimal slip curve (i.e. such a slip curve which responds to the 
minimum stability) is selected according to the condition of uniform distribution 
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of contact energy density. This criterion cannot be fulfilled exactly; for example, 
in the upper part of the slope (close to the ridge) the density of the contact energy 
must be lower then in the bottom part of the slip curve. This is why the criterion 
is selected in such a way that the minimum of the energy density is sought along 
the contact boundary.  
     The slope of 45° was concerned in our example. The algorithm allows us to 
change the slope in such a way that if the current slope is safe enough, steeper 
slope can be assessed, else the slope has top be decreased. If we use standard PC   
computer the procedure is very fast. Also the criterion imposed on safety margin 
can be changed for another one. 
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