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Abstract 

The paper presents an optimisation method for vehicle routing with time 
windows and scheduling of freight distribution/collection in urban areas. The 
differences with the classical approaches are outlined. The optimal routing 
solution that minimises the total travel distance is determined by investigating 
trips nature, obtaining a better initial solution and turning the problem into a 
transportation one. Based on the generated set of routes, the scheduling routine 
computes the minimum number of vehicles that could perform the container 
distribution/collection and the schedule for each vehicle. An alternative scenario 
with a reduced number of vehicles is compared with the initial one, taking into 
consideration vehicles utilisation, hiring costs, and penalty costs for the 
cancelled trips. The results presented in this paper are from a study carried out 
for the metropolitan area of Bucharest, where the method proposed for freight 
transport optimisation was successfully implemented. 
Keywords:  urban freight transport, optimisation, vehicle routing with time 
window, scheduling. 

1 Introduction 

Transport companies, customers, local and central authorities, for different 
reasons, are interested in the development of integrated logistics to satisfy the 
requirements of ongoing transport development. The optimisation of freight 
distribution/collection in urban areas implies solving transport routing and 
scheduling problems. In general, the objectives of these two complex 
combinatorial problems consist of minimising the fleet size, the number of 
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'unloaded trips', the total haulage distance, the transport costs or an aggregated 
function of the above mentioned. 
     The Vehicle Routing Problem (VRP) involves finding a set of routes, starting 
and ending at a depot, which services a set of customers. The problem is defined 
on a graph ( ),G V A=  , where { }n0 v,...,vV =  is a vertex set including the depot 

( )0v  and the customers ( )n,...,1i,v i = , and ( ){ }, | ; ,i j i jA v v i j v v V= ≠ ∈  is the 

arc set. Each arc set ( )ji v,v  has associated non-negative values ijc  representing 

distance, travel cost or travel time. If jiij cc =  for all Vv,v ji ∈ , then the 

problem is called symmetrical. Also, if ijkjik ccc ≥+ , then the triangle 

inequality is satisfied for vertices kji v,v,v . Each customer has a given 

demand iq  and the total demand hauled by any vehicle may not exceed the 
vehicle capacity Q. The objective function is to minimise the total travel 
distance, cost or time. When for each customer, the start of service must be 
within a given time interval[ ]ii ba , , the problem turns into a Vehicle Routing 
Problem with Time Windows (VRPTW). A vehicle is allowed to arrive before 
the beginning of the time window and wait at no cost, but is not permitted to 
arrive after the end of the time window. 
     Kolen et al [1] have presented the first optimisation method for the VRPTW. 
The method computes lower bounds using dynamic programming and state 
space relaxation. Branching decisions are taken on route-customer allocations. 
Fisher [2] describes an algorithm based on the K-tree relaxation of the VRPTW. 
Desrochers et al [3] have applied column generation to the VRPTW with a free 
number of vehicles. This column generation is in fact equivalent to the Dantzig-
Wolfe decomposition. The master problem consists in finding a minimum cost 
set of paths, among all generated paths, that ensures the service of all the 
customers. For computational reasons, Desrochers et al [3] solve the Linear 
Programming (LP)-relaxation of a Set Covering Problem (SCP) instead. This 
does not change the final result, if the triangle inequality of time and cost is 
satisfied. 
     The Scheduling Problem (SP) deals with finding the minimum number of 
vehicles, which could cover the routes generated in VRPTW, with respect to the 
time window constraints. The problem is equivalent to finding the minimum 
number of subsets the set of all routes could be divided into, satisfying the time 
constraints Bodin [4]. 
     The paper focuses especially on VRPTW and SP problems for the 
optimisation of containers transport. The classical VRPTW problem is modified 
such as the transportation of containers takes place as follows: from the depot 
(container terminal) to customers, and from customers to the depot. 
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2 Containers distribution/collection model 

As shown in Figure 1, a container terminal (T) has to serve a set of customers 
{ }n,...,1i|CC i == , using a minimum number of hired vehicles within a time 

window [ ]τ,0 . At the beginning of the time window, there are iq  containers at 
the terminal to be hauled to the customer iC , and ip  containers at customer iC  
to be hauled to the terminal. 
     The time window interval is related to the schedule of container trains 
arriving and departing from the terminal. The assumption that the distances and 
the travel time matrix are symmetrical is made. The vehicles are hired for the 
entire time window interval, and in addition to the hiring costs, the travel costs 
are proportional to the travel distances. Each vehicle has a capacity of one 
container. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Types of vehicle trip. 

     Figure 1 shows that there are four types of trip for container distribution: 
• type A trip – the vehicle hauls a container both ways 
• type B trip – the vehicle travels unloaded to the customer and returns 

with a container to the terminal 
• type C trip – the vehicle hauls a container to the customer and returns 

unloaded to the terminal 
• type D trip – the vehicle hauls a container to a customer, travels 

unloaded to another customer and returns to the terminal with a new 
container. 

 

     The optimisation algorithm for container distribution is divided into two 
phases: routing and scheduling. 
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     The routing phase can be mathematically expressed as: 
 

( ) ( )∑ ∑
=

≠
=

++δ+γ+β+α=
n

1i

n

ji
1j,i

jijiijiiii dddd2Fmin , 

subject to: 

n,...1i,pi
n

ij
1j

jiii ==δ+β+α ∑
≠
=

    (1) 

n,...1i,q i
n

ij
1j

ijii ==δ+γ+α ∑
≠
=

    (2) 

n,...1j,i,0,,, ijiii =≥δγβα ,    (3) 

 
where: 

iii ,, γβα  are the number of type A, B and respectively C trips for 
customer Ci 

ijδ  – the number of type D trips, involving an unloaded trip from 
customer Ci to customer Cj 

id  
– the travel distance between the container terminal T and 

customer Ci 

ijd  – the travel distance between customers Ci and Cj. 

     The objective function states that the total travel distance should be 
minimised. The above constraints refer to the containers that have to be hauled 
from customers (1), and to customers (2). Non-negativity constraints are also 
added (3). 
     As constraints (1) and (2) state, increasing iα  by 1 unit, means to decrease 
the sum of the other terms by 1 unit. It is not difficult to demonstrate that in the 
objective function this is translated into a reduction of the total travel distance. 
Therefore, iα  must have the maximum possible value ( )iii q,pmin=α . 

Subtracting iα  trips of type A for each customer, two sets of customers are 
obtained: 
• S = {Ci} – the set of customers that still have containers to be sent to 

the terminal: 

ii
n

ik
1k

kii qp −=δ+β ∑
≠
=

 

• L={Cj} – the set of customers that still have to receive containers from 
the terminal: 
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     As one can see, if the triangle inequality is satisfied ( )ijji ddd ≥+ , 

decreasing iβ  and jγ  by 1 and increasing jiδ  by 1, further reduces the 

objective function by ( )ijji ddd −+ . Thus, the optimisation problem could be 

transformed into a transportation problem with the L set of customers 
representing the origins and the K set of customers representing the destinations. 
If “demand” equals “production” ( ) ( )∑ ∑

∈ ∈

−=−
Si Lj

jjii pqqp , the transportation 

problem is balanced, otherwise is unbalanced. 
     The paths generated by the transportation problem, together with the iα  trips 
for each customer represent the vehicle routing problem solution. 
     The scheduling routine finds the minimum number of hired vehicles v, such 
as all the trips are performed within the [ ]τ,0  time window. Let M be the set of 
all trips. The scheduling problem is stated as: 

min v, 
subject to: 

MM
v

1i
i =

=
∪      (4) 

ji,MM ji ≠∅=∩                 (5) 

v,...1i,
ij Mm

j =τ≤θ∑
∈

     (6) 

where: 
Mi is a sub-set of M 

jθ  – the mj trip time. 
     The number of vehicles v should satisfy ∑

∈
θ≥τ

Mm
j

j

v . The lower bound of v 

is: 
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where  ...  is the integer part. 
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     If it is possible to divide the M set of trips in vmin sub-sets, so the constraints 
(4–6) are satisfied, then a feasible solution v* = vmin is obtained. Otherwise, the 
number of vehicles is increased by 1, and the procedure is repeated until a value 
v* satisfying all the constraints is found. For the same v*, many possible 
partitions of the set M might exist, and new conditions, such as the uniform 
utilisation of vehicles, might be added. 

3 Case study 

The algorithm described before has been developed to optimise the 
distribution/collection of containers in the metropolitan area of Bucharest (Figure 
2). The container terminal is located in the outer suburbs of Bucharest. Figure 2 
shows a situation with 12 customers with different locations in the city area that 
have to be served within a time window of 8 hours. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Spatial distribution of customers. 

     The computer program developed for the optimisation of container 
distribution/collection requires the following input-data: 
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• the number of containers pi to be hauled from customer Ci to the terminal 
T, and the number of containers qi to be hauled from the terminal T to 
customer Ci (Table 1) 

• the database containing customer–customer and terminal–customer 
distances and travel times 

• the time window interval, the additional time for loading/unloading the 
containers, and other commercial procedures at the terminal, and at the 
customers. 

 

Table 1:  Containers initial state. 

Customer Containers to be received 
from the terminal (qi) 

Containers to be sent 
to the terminal (pi) 

Trips of type A 
(αi) 

C1 3 5 3 
C2 7 7 7 
C3 4 5 4 
C4 7 6 6 
C5 5 6 5 
C6 5 2 2 
C7 2 5 2 
C8 7 4 4 
C9 6 7 6 
C10 5 4 4 
C11 7 6 6 
C12 6 3 3 

Total 64 60 52 

 

Table 2:  Demand, supply and customer to customer distances. 

 Destinations 
 C1 C3 C5 C7 C9 Γ 

Supply 
(containers) 

C4 29 30 29 42 47 0 1 
C6 20 24 24 41 43 0 3 
C8 51 52 50 58 52 0 3 
C10 34 38 35 47 46 0 1 
C11 25 31 29 48 46 0 1 

O
ri

gi
ns

 

C12 22 28 27 46 48 0 3 
Demand 
(containers) 2 1 1 3 1 4 12 

 
     Consequently, one obtains a transportation problem as shown in Table 2. 
     The cell located at the intersection of line Ci with column Cj represents the 
travel distance [km] in a type D trip on the Terminal → Customer Ci → 
Customer Cj → Terminal route ( )jiji ddd ++ . The problem is unbalanced and a 

“dummy” destination, customer Γ, is introduced, with a demand of 4 containers 
and 0 length distances connecting the origins. The solution of the transportation 
problem is shown in Table 3. 
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Table 3:  Transportation problem solution. 

 Destinations 
 C1 C3 C5 C7 C9 Γ 

Supply 
(containers) 

C4 – – – 1 – – 1 
C6 – 1 – 2 – – 3 
C8 – – – – – 3 3 
C10 – – – – 1 – 1 
C11 – – – – – 1 1 

O
ri

gi
ns

 

C12 2 – 1 – – – 3 
Demand 
(containers) 2 1 1 3 1 4 12 

 
     The value of the cell located at the intersection (Ci x Cj) represents the 
number of type D trips to be performed ( ijδ ). The value of the cells in column Γ 

represents the number of type C trips to be performed ( iγ ). 
     From Table 1 and Table 3, one obtains the final solution of the routing 
problem, consisting of 52 trips of type A, 8 trips of type D and 4 trips of type C. 
The travel times along selected routes are shown in Table 4. 

Table 4:  Routes travel times [min.]. 

Route Travel time Route Travel time 
T – C1 – T 20 T – C10 – T 80 
T – C2 – T 46 T – C11– T 36 
T – C3 – T 30 T – C12 – T 24 
T – C4 – T 60 T – C4 – C7 – T 63 
T – C5 – T 52 T – C6 – C3 – T 36 
T – C6 – T 50 T – C6 – C7 – T 61 
T – C7 – T 88 T – C10 – C9 – T 69 
T – C8 – T 108 T – C12 – C1 – T 33 
T – C9 – T 92 T – C12 – C5 – T 40 

 

     Each container needs 15 minutes for loading/unloading and other commercial 
procedures. The total travel time along all routes is 4835 minutes. Considering a 
time window of 8 hours, the minimum number of vehicles is minv =11. The 
computational program succeeds in finding a scheduling solution with 11 
vehicles. 

As Figure 3 shows, it was attempted to maximise the vehicles utilisation as 
much as possible. Note that for one of the vehicles the utilisation does not justify 
the hiring costs for the entire time interval. 

Assuming the set of trips can be split into pre-emptive and non pre-emptive 
trips, then the last vehicle might be eliminated if the hiring cost exceeds the 
penalty costs due to failure of performing some non pre-emptive trips within the 
time window. The cancelled trips are performed within the next time window as 
pre-emptive ones. Thus, the optimisation could be extended to cover two time 
windows, if the number of containers to be transported within the next time 
window is known. 
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Figure 3: Vehicles utilisation. 

 

Figure 4: Vehicles utilisation (non pre-emptive trips case). 

     Considering as non pre-emptive trips those trips that haul containers from the 
terminal to the customers, the problem might be solved with 10 vehicles. The 
non pre-emptive trips are cancelled starting with the most time consuming type 
C trips, and if this is not sufficient some type D trips are turned into type B trips 
to be completed, and type C trips to be cancelled. 
     Figure 4 shows the utilisation of all 10 vehicles, when one type C trip (T – C8 
– T: travel time 123 minutes) has been cancelled. 
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     The computer model was developed using Java 2™ capabilities, and 
Microsoft Access database to store input-data. The tests performed on Bucharest 
area, with up to 50 customers provided almost “instantaneous” solutions on a 
Pentium III PC (computing time and results displaying in less than 1 second). 

4 Conclusions 

Both mathematical and computer model enable the activities of distribution and 
collection of containers from and to the customers, with minimum of resources 
managed by the terminal. 
The solution presented would also alleviate congestion on the main urban road 
arteries during peak hours. 
     The vehicle routing solution provides the set of routes to be covered, 
minimising the total travel distance. The scheduling solution offers the minimum 
number of vehicles and the transport schedule to be carried out by each hired 
vehicle. An alternative with a reduced number of vehicles and cancelled trips is 
computed. The economic validation of this alternative assumes that the hiring 
cost of a vehicle would exceed the penalty costs of the cancelled trips. 
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