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Abstract

In the case of tunnel excavation, it is important to investigate ground properties
before staring construction. However, it takes much money and time to investigate
the ground properties. Therefore, a numerical technique to solve the problem is
proposed in this paper. The method is parameter identification, which is inverse
analysis based on an optimal control theory. The main purpose of this research
is to present the parameter identification of elastic modulus at the Kasakura tun-
nel site located in Fukui prefecture in Japan. The blasting is made at the tunnel
face and the vibration of the blasting is measured at the observation points. These
observation velocities are used for the performance function.
Keywords: finite element method, parameter identification, first order adjoint
method, weighted gradient method.

1 Finite element equation

Applying the finite element method to the basic equation, the finite element equa-
tion discretized by the linear tetrahedral element is obtained as follows.

In this paper, indecial notation and summation convention with repeated indies
are used. The basic equation is expressed by the following three equations; the
equilibrium of stress equation, the strain-displacement equation and the stress-
strain equation.

σij,j − ρbi + ρüi = 0, (1)

εij =
1
2
(ui,j + uj,i), (2)
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σij = Dijklεkl, (3)

where σij , bi, ui, üi and εij are total stress, body force, displacement, acceleration,
and strain, respectively. The elastic stress – strain relation is expressed by Dijkl

and can be written as follows;

Dijkl = λδijδkl + µ(δikδjl + δilδjk), (4)

where δij is Kronecker’s delta, in which Lame’s constants λ and µ are written as:

λ =
νE

(1 − 2ν)(1 + ν)
, (5)

µ =
E

2(1 + ν)
, (6)

where E and ν are the elastic modulus and the Poisson ratio, respectively. The
basic equations are solved on the following boundary conditions.

ui = û0
i on t = t0, (7)

u̇i = û0
i on t = t0, (8)

where û0
i and u̇0

i are the specified values given at the initial stage. The boundary
Γ is divided into Γ1 and Γ2. On Γ1 boundary, displacement is specified and on Γ2

boundary, surface force ti is given:

ui = ûi on Γ1, (9)

ti = σijnj = t̂i on Γ2, (10)

where ûi and t̂i are specified values on the boundary, nj is the external unit normal
to the boundary.

1.1 Finite element equation

Applying the finite element method to the basic equation, the finite element equa-
tion discretized by the linear tetrahedral element is obtained as follows;

Mαiβküβk + Cαiβku̇βk + Kαiβkuβk = Γ̂αi, (11)

Each matrix can be written as follows;

Mαiβk = ρ

∫
V

δikNαNβdV , (12)

Kαiβk =
∫

V

Nα,jDijklNβ,ldV , (13)
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Γαi =
∫

V

(Nαρbi)dV −
∫

Γ2

(Nαt̂i)dΓ, (14)

The effect of damping can be expressed as follows;

Cαiβk = α0Mαiβk + α1Kαiβk, (15)

where Nα is the linear interpolation function of the finite element method. Mαiβk

and Kαiβk are mass and elastic matrix, respectively.

2 Newmark β method

In this paper, the Newmark β method is applied to the discretization in time. In the
Newmark β method, displacement and velocity at (n + 1) time are expressed as
follows; (n + 1) time are expressed as follows;

u
(n+1)
βk = u

(n)
βk + u̇

(n)
βk ∆t +

1
2
ü

(n)
βk ∆t2 + β∆t2(ü(n+1)

βk − ü
(n)
βk ), (16)

u̇
(n+1)
βk = u̇

(n)
βk + ü

(n)
βk ∆t + γ∆t(ü(n+1)

βk − ü
(n)
βk ), (17)

where β and γ are set as 0.25 and 0.50, respectively. Eqs. (16) and (17) are substi-
tuted into eq.(14), the following equations can be derived as follows;

Gαiβkü
(n+1)
βk = Γ̂αi − Hαiβkü

(n)
βk − Lαiβku̇

(n)
βk − Kαiβku

(n)
βk , (18)

where Gαiβk, Hαiβk and Lαiβk are written as:

Gαiβk = Mαiβk + γ∆tCαiβk + β∆t2Kαiβk, (19)

Hαiβk = (1 − γ)∆tCαiβk + (
1
2
− β)∆t2Kαiβk, (20)

Lαiβk = Cαiβk + ∆tKαiβk, (21)

Calculating acceleration ü
(n+1)
βk by eq.(18) and substituting it into eqs.(16) and

(17), displacement u
(n+1)
βk and velocity u̇

(n+1)
βk can be obtained.

3 Performance function

In this paper, the parameter identification is defined as finding optimal value so
as to minimize the performance function. The performance function is defined as
follows;

J =
1
2

∫
t

(u̇αi − u̇∗
αi)Qαiβk(u̇βk − u̇∗

βk)dt, (22)

where u̇αi and u̇∗
αi are the computed and observed velocities and Qαiβk is the

weighting diagonal matrix.
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4 First order adjoint equation

In this paper, the extended performance function J∗ is expressed as follows;

J∗ =
1
2

∫
t

(u̇αi − u̇∗
αi)Qαiβk(u̇βk − u̇∗

βk)dt

+
∫

t

λT
αi(Fαi − Mαiβküβk − Cαiβku̇βk − Kαiβkuβk)dt, (23)

where λαi is the Lagrange multiplier. Taking the first variation of the extended per-
formance function, the gradient of the performance function, the adjoint equation
and terminal condition can be calculated. The first variation of the extended per-
formance function δJ∗ is expressed as follows; The first variation of the extended
performance function δJ∗ is derived as;

δJ∗ =
∫

t

(u̇αi − u̇∗
αi)Qαiβkδu̇βkdt

+
∫

t

δλT
αi(Fαi − Mαiβküβk − Cαiβku̇βk − Kαiβkuβk)dt

+
∫

t

λT (δFαi − Mαiβküβk − Cαiβku̇βk − Kαiβkuβk)dt, (24)

where δJ∗ is transformed to obtain the gradient of performance function with
respect the elastic modulus.

δJ∗ =
∫

t

(u̇i − u̇∗
i )Qαiβkδu̇βkdt

+
∫

t

δλT
αi(Fαi − Mαiβküβk − Cαiβku̇βk − Kαiβkuβk)dt

+
∫

t

λT (δFαi − Mαiβkδüβk − Cαiβkδu̇βk − Kαiβkδu̇βk

− (α1K
∗
αiβkuβk + K∗

αiβku̇βk)δEdt. (25)

where K∗ = Kαiβk/E. Integrating by parts, δJ∗ is transformed as follows;

δJ∗ = (u̇αi(tf ) − u̇∗
αi(tf ))Qαiβk − (u̇αi(t0) − u̇∗

αi(t0))Qαiβk

− λT
αi(tf)Mαiβkδu̇βk(tf ) + λT

αi(t0)Mαiβkδu̇βk(t0)

+ λ̇T
αi(tf )Mαiβkδuβk(tf ) + λ̇T

αi(t0)Mαiβkδuβk(t0)

+ λT
αi(tf )Cαiβkδuβk(tf ) + λT

αi(t0)Cαiβkδuβk(t0)

−
∫

t

λ̈T
αiMαiβkδuβkdt +

∫
t

λ̇T
αiCαiβkδuβkdt −

∫
t

λT
αiKαiβkδuβkdt

+
∫

t

δλT
αi(Fαi − Mαiβküβk − Cαiβku̇βk − Kαiβkuβk)dt
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−
∫

t

(üαi − ü∗
αi)

T Qαiβjδuβjdt

−
∫

t

λT
αi(α1K

∗
αiβkuβk + K∗

αiβku̇βk)δEdt, (26)

The first variation of the extended performance function δJ∗ should equal to 0.
Then, the adjoint equation and the terminal condition are obtained.

Mαiβkλ̈βk − Cαiβkλ̇βk + Kαiβkλβk + (üαi − ü∗
αi)Qαiβk = 0. (27)

λαi(tf ) = 0, (28)

Mαiβkλ̇βk(tf ) + (u̇αi(tf ) − u̇∗
αi(tf ))Qαiβj = 0, (29)

where λ̈βk(tf ) is the terminal condition of acceleration at the terminal time tf and
λ̈βk(tf ) is solved for using λ̇βk(tf ) and λβk(tf ).

λ̈βk(tf )Mαiβk = −Qαiβk(u̇βk − u̇∗
βk)

+ λ̇βk(tf)Cαiβk

− λβk(tf)Kαiβk, (30)

The gradient of the performance function is derived as follows;

grad(J∗)βk = λT
αi(α1K

∗
αiβku̇βk + K∗

αiβkuβk). (31)

5 Weighted gradient method

The weighted gradient method is applied as the minimization technique. The mod-
ified performance function is expressed as follows;

K = J∗ +
1
2

∫
t

(X(n+1)
α − X(n)

α )Wαβ(X(n+1)
β − X

(n)
β )dt, (32)

where Xβ is to be identified. The optimal condition of the modified performance
function is as follows;

δK = 0. (33)

The parameters can be updated at each iteration.

WαβXn+1
β = WαβXn

β − grad(J∗)β . (34)

Using eq.(34), the parameter is updated by the iterative calculations.
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Figure 1: Finite element method.

Figure 2: Computational domain.

6 Numerical study

The present method is applied to the Kasakura tunnel site. In the study, the actual
observed data is employed. The purpose is to find parameter so as to minimize
performance function.

The Kasakura tunnel construction site is located in Fukui prefecture in Japan.
Fig.1 illustrates the finite element mesh. Total number of nodes and elements are
1045 and 1934, respectively. There are three layers in this area. The elastic modu-
lus is considered to be unknown in layer 2. Blasting force and observed points are
shown in Fig.2. This blasting force is assumed as 1.0×108[kN/m2]. The Poisson’s
ratio is 0.30. The observed points is set at No.1 and No.2. The elastic modulus in
the stratum colored in layer 2 is identified.
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Figure 3: Performance function.

Figure 4: Elastic modulus.

6.1 Basic equation

The identification of the elastic modulus in the stratum colored in layer 2 is identi-
fied based on the velocities observed at observed points Nos. 1 and 2. Fig.3 shows
the variation of performance function. Fig.4 shows the variation of the elastic mod-
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Figure 5: Y Velocity at point 1.
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Figure 6: Y Velocity at point 2.

ulus. The final value of the elastic modulus computed based on the observed value
is 1.38 × 108[kN/m2], which is in close agreement with the value obtained by
the drilling tests. Figs.5 and 6 show the variation of comparison velocity. Two data
show almost same wave form. Few differences are influence of observed error and
viscosity.
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7 Conclusion

The elastic modulus can be identified using the finite element method and the
first order adjoint method of an optimal control theory. The performance function
is defined as the square sum of the difference between computed and observed
velocities. The elastic modulus is found so as to minimize the performance func-
tion. The elastic modulus is converged to the target value staring from the initial
value. The performance function is converged to 0. Thus, it is verified that the
numerical method presented in this paper is correct and valid.
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