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Abstract 

This study presents an alternative approach for identification of damaged zones 
near excavations. The approach is based on ideal plastic solutions but in contrast 
to the classical case it deals with the Cauchy’s problem only by alternating 
classical solutions for slip zones with solutions for stress trajectories followed by 
conversion of the latter into slip grids.  Comparisons with classical solutions are 
discussed.  
Keywords: ideal plasticity, slip lines, stress trajectories. 

1 Introduction 

Damaged zones near excavations are frequently observed in underground mines. 
They present a significant issue for safety and effectiveness of mining operations 
and should be properly accounted for in design of particular excavations. This 
paper is aimed at the development of numerical methods for determination of 
damage zones in the case of long-wall excavations such as tunnels, well-bores, 
tabular stopes, etc. Another important motivation of this study is the application 
of a variant of the stress trajectory element method, STEM, which is currently 
under development in the Wessex Institute of Technology [1]. The method 
addresses the problem of stress identification in statically determined bodies by 
employing stress trajectories. 
     The concept of stress trajectories comes from photoelasticity, therefore one 
can adopt the following definition due to Frocht [2]: Stress trajectories are curves 
the tangents to which represent the directions of one of the principal stresses at 
the points of tangency. Stress is a second-rank tensor which components satisfy 
differential equations of equilibrium, DEE, and certain constitutive equations. 
The latter constitute a broad class and some examples are found in engineering: 
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- in elasticity, the laplacian applied to the first invariant of the stress tensor 
should vanish;  
- in ideal plasticity, the deviator of the stress tensor is a constant;  
- in granular medium, certain linear relationships between the mean stresses and 
the stress deviator should be fulfilled;  
- in rock mechanics non-linear relationships are frequently used.  
     This study employs the stress trajectory concept for the case of ideal plasticity 
in order to build slip grids in plastic zones forming near an excavation.  

2 Mathematical model of damaged zones near long-wall 
excavations 

2.1 Assumptions in modelling 

It is accepted that stress field near an excavation can be described by the plane 
stress condition. This is typical for tunnels, well-bores and other long-wall 
excavations provided that their axes are oriented along one of the principal 
stress. It is assumed that the excavation has been made in weak rocks that can be 
deformed beyond the yielding limit and therefore surrounding rocks can be 
damaged. It is also assumed that the rockmass in damage zones is in limiting 
equilibrium. For simplicity, the damage zones are considered to be ideal plastic. 
Such an assumption is often accepted for coals, e.g. [3], however this 
simplification is not crucial and can be easily extended for some other rocks 
staying in limiting equilibrium to take friction and cohesion into account, see 
[4].The plastic zone is assumed to be bounded and embedded into infinite elastic 
zone. The boundary between the zones is not known. The present paper does not 
deal with the identification of the unknown boundary; if necessary this can be 
performed by the approach suggested in [5].  

2.2 Lamé – Maxwell equations of equilibrium 

For plane problems there are two independent DEE valid at each point of the 
domain including the boundary between plastic and elastic zones.  

0
2
22

1
12,0

2
12

1
11 =

∂

∂
+

∂

∂
=

∂

∂
+

∂

∂

xxxx
σσσσ                         (1) 

where σkj are stress components in a Cartesian coordinate system Ox1x2. The 
gravitational term has been omitted in (1) for convenience, because it can be 
accounted for by incorporation into boundary conditions.   
     DEE (1) can be rewritten in terms of principal stresses and principal 
directions in the Lame-Maxwell form, [3]: 
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     Here σk is a principal stress along the k-th stress trajectory which radius of 
curvature is defined as ρk

-1=∂θ/∂sk; θ is the principal direction (the angle 
between σ1 and the x1-axis); sk is the arc length along the k-th trajectory. In order 
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to distinguish different families of the stress trajectories it is assumed that σ2≤σ1, 
these families are further referred to as s1 and s2 – families. 
     In plastic zone the following governing equation is valid 

k=
−
2

21 σσ                                                       (3) 

where k denotes the yielding limit of the rocks. 
     The systems (1), (3) or (2), (3) form closed systems of equations and can be 
solved independently of kinematics equations. The latter is not included in the 
analysis because it is not required for the statically determined cases as the one 
considered here. 

2.3 Classical approach 

Classical texts on ideal plasticity, e.g. [6, 7], suggest to rewrite (1) by 
substituting (3) and using the following relationships 
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where the angle  

4/πθϑ −=                                                  (5) 
represents the inclination of the sα-family of slip lines; another orthogonal 
family, the sβ-family, has orientations θ+π/4. Notations are shown in Fig. 1. This 
leads to the system of 2 PDE with respect to 2 unknowns σ and ϑ : 
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Figure 1: Notations: β is the angle of the tangent to the contour C with x1 
axis, γ is the angle between the tangent to the contour and the 
orientation of the first principal stress σ1. tsα and nsα show the 
tangent and normal to the slip lines sα and sβ. 
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     After simple transformation of (6) one finds the Henckey integrals and 
differential equations for determination of the slip grid [5] 

family;forconst,
2

,cot

family;αforconst,
2

,tan

1

2

1

2

−=+−=

−=−=

βϑσϑ

ϑσϑ

kdx
dx

kdx
dx

                 (7) 

     After that (7) is solved by using the finite difference method. 
     The classical Cauchy’s problem is solved within a characteristic triangle 
which boundaries are formed from the contour as the hypotenuse and 
characteristic lines as its legs. The legs of the triangle can be taken as boundaries 
for solving the Riemann – Goursat problem providing the solution when 
boundaries are characteristic lines of different families. By solving this problem 
the integral surface can be considerably extended. 

2.4 STEM approach 

STEM solves the Lame-Maxwell DEE’s in the following form 
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where ψ=σ/2k. 
     Its evident that the 2nd order PDE has the form 
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     It should be noted that mean stresses (σ and ψ) and the angle ϑ  also satisfy 
this equation. This forms the basis for using alternating Cauchy problems for the 
slip grids and stress trajectories as illustrated in the next section. 
     To formulate BVP in terms of principal direction, θ and derivatives of θ are 
needed 
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     The decomposition of the derivatives along s1 and s2–families from (8) into 
their normal and tangential derivatives has the form  
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     Using equation (10) the unknown normal derivatives of stresses and 
orientations can be calculated. 
     Nodes of the next layers are found using the properties of characteristics, one 
of which states that characteristics form an orthogonal grid; characteristics of 
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different families form an orthogonal system of lines. Intersections of these 
different families create a set of nodes for the next layer of the grid. 
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     Notations are shown in Fig. 2. In formulas (12) the subscript refers to the 
node while the superscript specifies the layer number (layer k is known, layer 
k+1 is unknown); δj represents the distance between nodes of the layer k and k+1 
at position j or j+1 along the s1 or s2 characteristic. 
 

 

Figure 2: Determination of coordinates and visualization of angles. 

At this point the normal derivatives of orientations and stresses as well as the 
tangential ones are determined and the change of the orientations and stresses 
along characteristics can be computed using (11). These terms are essential for 
computing the unknown values in the new layers, for which the Taylor’s 
expansion was used 
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2.5 Combining STEM and Kachanov 

Classical approach developed for example by Kachanov [7] gives the solution 
only inside the characteristic triangle stating the solution outside cannot be 
obtained. 
     Boundary conditions from the classical approach can be used in STEM to 
demonstrate the equivalence between these two approaches. Slip Grid (SG) is 
obtained by using classical solution of Cauchy’s problem for the given non-
characteristic boundary while Stress Trajectories (ST) for the corresponding 
boundary are found by STEM. By rotating the stress orientations in the ST Grid 
by -π/4, orientations of shear stresses are found at every node. 
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     Solution of the Cauchy problem using STEM gives a characteristic triangle 
again, which is different from that obtained in the classical approach. The 
boundaries of this triangle can be used in the next step as new initial boundaries. 
Bearing in mind that ST Grid was obtained using STEM the following needs to 
be brought in attention. Boundaries of the triangle are characteristic lines which 
is why they would form a characteristic boundary for ST. Rotating the 
orientations on this boundary by -π/4 forms a non-characteristic boundary for the 
slip lines. This new boundary can be then easily used for classical solution. 
     These two approaches can be alternated to move away from the initial 
boundary. 

3 Numerical examples 

3.1 Tunnel in weak rocks 

As an example of the proposed technique, let us consider a tunnel of the 
geometry shown in Fig. 3. 
 

 

Figure 3: Tunnel in weak rocks (σn and τn are present to model the effects of 
the supports). 

The BC are chosen as follows 
cn =σ    ,   bassn +=τ )(             (11) 

where a b and c are certain piecewise constant coefficients different from linear 
and circular parts of the boundary. 

3.2 Results 

The following results have been obtained for the classical solution of Cauchy’s 
problem (using Kachanov’s approach); solution by STEM; comparison of STEM 
approach and classical approach. Due to symmetry the problem has been solved 
for the left half of tunnel’s boundary as shown in Fig. 3. 
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Figure 4: Classical solution (Slip Grid) vs. STEM solution (ST Grid). 

 
 

 

Figure 5: Extended solution using Riemann – Goursat problem (Slip Grid) 
versus STEM solution (ST Grid). 
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Figure 6: Solution of Cauchy – Riemann problem (Slip Grid) and extended 
solution by STEM. 

4 Conclusions 

It is shown that slip grid in plastic zones near long-wall excavations can be built 
by solving the Cauchy boundary value problems alone without using the Goursat  
problem for the determination of slip lines in intermediate zones. It is shown that 
the Cauchy problem for the determination of stress trajectory patterns can be 
formulated instead of the Goursat problem. Once the stress trajectory field is 
determined the slip grid becomes known by simple rotation of stress orientations. 
The approach also allows one to extend solutions beyond the characteristic 
triangle by using the boundary of the characteristic triangle as a new boundary 
for building stress trajectories and visa versa to build the slip grid from the 
boundary of ST grid. Good agreement with the classical solutions have been 
observed for particular cases of geometry and boundary conditions.  
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