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Abstract 

In geomechanical engineering the stability of the tunnel face appears to be one of 
the most decisive items in the list of assessments needed for verification of 
bearing capacity of the system tunnel – surrounding rock. Studies following from 
on site measurements are very expensive and depend strictly on the nature of 
material being involved in the study. Experiments conducted on scale models in 
stands which are filled by physically equivalent materials are more promising 
and complex, as instrumentation of smaller samples is richer and more flexible 
than in the case of treatment on real site. Moreover, numerical modeling, which 
requires a particular description of material behavior of the structures coming 
into the computational models, can be derived from physical models in an easier 
way than from real tunnel behavior. A numerical approach is proposed in such a 
way that internal parameters of a mathematical physically nonlinear model are 
evaluated using partial results of experimental scale models from equivalent 
materials. Although basically strongly nonlinear problems are solved, solution of 
linear algebraic equations is the final step of the approach for identification of 
values of internal parameters characterizing material properties in mathematical 
simulation of reality. Tunnel face stability in dependence of a length of work-out 
space is solved in this paper using coupled modeling, as an example of 
application of the procedure envisaged.  
Keywords: fiber reinforced concrete lining, tunnels, coupled modeling, 
eigenparameters, effect of tunnel lining stiffness.  
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1 Introduction 

In assessment of underground structures a combination of experiments and 
mathematical treatments are of great interest for designers and researches. Such a 
coupling enables one to improve information needed in numerical modeling on 
mechanical behavior of structural elements being employed in the problem at 
relatively low cost. The following approaches can be distinguished in practice:   
- Convergence analysis, comparing results from experiments and pilot numerical 
analysis and successively adjusting material parameters in such a way that the 
numerical results are in reasonable agreement with the experimental. 
- Back analysis, or coupled modeling is defined as a process, in which a 
qualitative and quantitative measure of agreement with experimental results is 
ensured in mathematical model and suggests approaches, by virtue of which 
internal parameters of different kind are adjusted to be in compliance with 
experiments as close as possible. In most cases fitting of physical laws 
(generalized Hooke’s law, creep, relaxation, aging, etc.) is sought, but sometimes 
new geometry arrangement is required. 
     Previously Cividini, et al., [1] suggested a successful approach leading to a 
comparative study of the rock and tunnel lining behavior and the reality in terms 
of internal parameters (material properties). The paper presents a discussion on 
some of the aspects of parameter “characterization” problems (or back analyses) 
in the field of geomechanics. 
     In 1992 Dvorak established Transformation Field Analysis, [2], which 
expressed nonlinear problems in a hull of linear effects and effects of 
eigenparameters. This method appeared a powerful tool for solving optimal 
prestress of a thick-walled composite cylinder consisting of many different 
cylindrically orthotropic layers being loaded by uniform, axisymmetric tractions 
and by piecewise uniform eigenstrains in the layers, [3]. The first attempts have 
been done in [4] to involve the eigenparameters in the coupled modeling. The 
starting point for this approach was elastic state and effect of eigenparameters 
was expressed by combination of products of influence matrices and 
eigenparameters. In this paper sophisticated experimental approach leading to an 
observation of effect of work-out space to displacements of the tunnel face is 
presented. The displacements can then be used in the coupled modeling.  

2 Numerical modeling  

As said in Introduction, the idea of the back analysis used here starts with similar 
assumptions and approaches as in Transformation Field Analysis (TFA). This 
idea is basically very simple. Consider a generalized Hooke’s law, i.e. let us 
relate overall stresses σ with overall strains ε and eigenstrains µ, or eigenstresses 
λ, which may be realized as generalization of the influence of temperature: σ = 
L(ε - µ) = Lε + λ, where L is the purely elastic material stiffness matrix. This 
generalization differs from description of the temperature in such a way that the 
temperature appears in Hooke’s law as the trace in the strain tensor while 
eigenstrains or eigenstresses are full-value tensors of the second order.  
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     In order to formulate the general procedure for the TFA, it may be done in 
terms of many modern numerical methods. First, let us consider that the body 
(part of a structure, element, and system of more elements, composite, rock, soil) 
behaves linearly, i.e. Hooke’s linear law is valid in the entire body. When the 
problem is correctly posed, the displacement vector, strain and stress tensors can 
be obtained from the Navier equations, kinematical equations, and linear 
Hooke’s law. 
     In the second step we select points, where the measured values are available, 
either from experiments in laboratory, or from “in situ” measurements. We also 
select points, or regions (subdomains) from the body under study, and apply 
there successively unit eigenparameter impulses (either eigenstresses or 
eigenstrains) to get an influence tensors (matrices). In order to precise this 
statement, denote Ai, i = 1,...,n, either the points or regions where the 
eigenparameters will be applied. Let, moreover, the set of points where the 
measured values are known, be Bj, j = 1,...,m. Then the real stress at Bj is a linear 
hull of stress σext at Bj due to external loading and eigenstrains  µ  (or 
eigenstresses λ) at Ai (similar relations are valid for overall strain field ε) leads us 
to relations as 

σ = σext + Pσ µ ,      or     σ = σext + Rσ λ  ,                       (1) 

ε  = εext + Pε µ  ,      or       ε  = εext + Rε λ  ,                      (2)  

where the influence tensors, P  and  R, are obtained from the unit impulses of 
eigenparameters introduced on selected regions Ai , i = 1,...,n. Note that in 3D the 
eigenparameter tensor is symmetric, so that six components are available as the 
design parameters in one region. The components of influence matrices are 
created from responses of stresses or strains in elastic medium again. The 
dimensions of  σ ,  σext,  µ ,  and λ  are m × 6 (because of symmetric stress and 
strain tensors) and the dimensions of  P  and  R are m × 6 × n.  
     Note that it holds: λ  = - L µ . The free, or design parameters, which should be 
selected in such a way that the measured and calculated values are mutually as 
close as possible, can be determined from many approached. One of them is 
suggested in the next text, starts with formulation of an optimization problem, 
and can be considered a back analysis procedure. 
     Without any details we can assert that similar relations as that of (1) and (2) 
can be written for displacements: 
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     On the other hand measured stresses (σi
meas)k, or measured displacements 

(umeas
i)k  are available in a discrete set of points (namely the points Bi). A natural 

requirement is that the values of measured and computed values be as close as 
possible. This leads us to the optimization of an “error functional”  
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or 

 © 2008 WIT PressWIT Transactions on the Built Environment, Vol 102,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Underground Spaces I  83



I[(λj)l]=∑
=

6

1i
∑
=

m

k 1
[(ui)k - (ui

meas)k]2 →   minimum                          (5) 

Differentiating I by ( β
αλ ) yields 

 

∑
=

n

l 1
(Aαj)βl (λj)l = Yα

β,  α = 1,...,6, β = 1,...,m,                        (6) 

where 

(Aαj)βl = ∑
=

6

1i
∑
=

m

k 1
(Rij)kl (Riα)kβ , 

Yα
β  = -∑

=

6

1i
∑
=

m

k 1
(σi)k - (umeas

i)k + ∑
=

6

1j
∑
=

m

l 1
 (Rij)kl(λj)l (Riα)kβ 

3 Physical modeling 

Physical modeling is important for study of effects taking place in rock material 
in connection with construction of underground structures. The modeling allows 
us to investigate mechanisms of geotechnical phenomena, predicts stress changes 
and their demonstration during various progresses of underground construction 
and also during simulation of operating conditions. 
     Basic rules of the experimental modeling and formulation of the boundary 
conditions for modeling comes out from the principles of geometrical and 
physical similarity which is inferred for a consideration of dimensional analysis, 
[5]. Such a similarity modeling applied to slope stability is published in [6], for 
example. To simplify the solved problem constitutive relevant quantities v1, 
v2,...,vn can be selected, which posses exercise decisive influence to process 
taking place in the rock material. We assume that influence of the other 
quantities is lesser. Then physical equation involving function of relevant 
quantities of various dimensions  

F( v1, v2, . . . ,  vn) = 0,                                            (7) 
describes in simplification, given by selection of these quantities, behaviour of 
the rock material. According to the Buckingham theorem this dimensional 
equation for relation between reality and model can be reduced to the problem of 
finding k < n relevant non-dimensional parameters iπ . They are functions of νi , 
fulfil the above equation (7) and are numerically identical for model and reality. 
By implementation of non-dimensional parameters iπ , for which from 
requirement of dimensional homogeneity follow  

iπ  = v ix1
1  v ix2

2  . . . v nix
n  , (i = 1, 2, . . . ,k) 

non-dimensional physical equation is obtained 
F´( 1π , 2π ,. . . , kπ ) = 0, 
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in which arguments π  are dimension independent. Non-dimensional parameters 
iπ correspond to basic central processing units L (length), T (time), M (mass). 

     Physical model has to obey geometrical similarity; in reality it is a 
proportionality of dimensions and angles between model and modeled object in 
the whole range of the model.  
     In the modeled geotechnical problems the ratio of length dimensions of the 
model and reality plays very important role (and is given from the intended 
geometry of the scale model). If 1/αl is the length scale, i.e. ratio of lengths in the 
model and reality and a is the ratio of bulk densities 

a = ρmodel/ρreality, 
then we can define ratios for the following quantities 

forces   Pmodel  =  a. (1/αl)3 . Preality 
stresses σmodel  =   a. (1/αl) . σreality 
deformations εmodel   =   a. (1/αl) . εreality. 

     Time as such asserts oneself during derivation of non-dimensional parameters 
determined from a system of equations in relevant variables and corresponding 
basic units. To determine time scale ratio of the time in reality and in the model 
empirical estimation is applied (in terms of time needed for stress redistribution 
in the model body caused by pressure changes in model in comparison to time 
when the same process took place in reality). This time scale is applied for 
assessment of the rest quantities depending on time. Generally time scale can be 
determined as 

αt = (vmodel/vreality). αl,  
where  

αt – time scale  
αl – length scale 
v – velocity of deformation. 

     To simulate the most perfect processes taking place in the rock material, rock 
environment is replaced in the model by equivalent materials their determinate 
physical and mechanical properties according model laws and scale of model 
agree with rock properties and respect the character of failures simulating those 
in rock material. The models are constructed from mixture of various, mostly 
easy available materials (e.g. sand, bentonite, ballotine, gypsum, mica - 
vermiculite, composite mortar, cellular concrete and water).  
     The models are constructed in stands of various dimensions in dependence of 
solving problem and length scale of the model.  

4 Example 

The experiments are focused on physical models on a scale 1 : 100, in a model 
stand. In the models rock material is substituted by physically equivalent 
materials, which consist of various mixtures of sand, bentonite and fat (65% + 
29% + 6%), and moisture. Their properties are determined by standard tests:  
volume mass ρ     1.45 g/cm3 

compressive strength σt      0.027 MPa 
strength in simple tension σc                         0.006 MPa  
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cohesion cp      0.014 MPa 
angle of internal friction φp    34°50´ 

Young´s modulus Edef     0.12 MPa 
Poisson´s coefficient ν    0.28 
     The applied equivalent material is very plastic with a high rate of permanent 
deformation and on a scale of the model it produced rock of a mudstone type. In 
order to measure movements of the tunnel lining and surrounding rock needles 
with small discs at one end facing to the tunnel heading, which serve for non-
penetrating of needles to the rock, are installed to the modeled tunnel, see Fig. 1.  
 
 
 
 
 
 
 
 
 
 

Figure 1: View of the model stand with dimension 250 x 250 x 250 mm 
equipped by displacement measuring system (needles). 

     A lined tunnel of cylindrical shape with an internal diameter of 76 mm was 
modeled parallel to the bottom of stand. To determine stability of the tunnel face 
in dependence of the length of work-out space, a part of the tunnel lining in the 
model test was formed from five 20 mm long rings. Among them 2 mm spacing 
were retained (Fig. 2). These five rings were equipped with locking mechanism, 
which could be released by using strings. A rubber band, fixed on the external 
ring circumference, closed the gap in the ring (Fig. 3). During the model 
experiment, the rings were successively released by a special technology 
described in the sequel to simulate advancement of the tunnel face. For example, 
the ring near the tunnel face was released to model starting instant of the 
excavation of tunnel opening. 
 
 
 
 

 
 
 
 
 

Figure 2: Equivalent of the tunnel lining with inner diameter of 76 mm 
created by hardened paper used in the model experiment. 
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     As mentioned above, special equipment (based on a system of needles) is 
developed, which enables one to determine the values of the displacements with 
the accuracy of 0.05 mm (Fig. 4). Before the experiment tests the needles are lent 
against the tunnel face. Using a thedolite that is placed about 2 m from the model 
stand transversaly to the needles, the changes of the position of needles – their 
displacements due to tunnel face movement – are determined with respect to the 
initial state of the needles.  
 

 
 
 
 
 
 
 
 

 

Figure 3: One ring used for the tunnel lining forming. 

 
 
 
 
 
 
 

 
 
 

Figure 4: Aluminum needles for tunnel face deformation measurement 
equipped with square discs. 

     In Fig. 5 (a) to (e) the contour lines of displacements among the points the 
needles which are affected by the tunnel face movements, which are measured 
after successive release of the first to fifth rings of the simulated tunnel lining are 
shown. The length of work-out space ranges from 22 mm to 110 mm. After 
releasing the fifth ring the time-dependent behavior of model material is studied.       
Displacements measured after 50 minutes, 16 hours, 24 hours, 40 hours, 47 
hours and 5 days after releasing the fifth ring are shown in Fig. 6 (g) to (k).       

5 Conclusions 

In this paper the procedure for calculating a laminated arch is suggested in 
cylindrical coordinates zrθ0 , starting with the assumption of generalized plain 
strain. Before introducing this assumption, the displacements are developed into 
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Fourier’s series in the time and hoop coordinates. Employing kinematical 
equations in cylindrical coordinates, and Hooke’s law the stresses are derived in 
the split formulation, from which the radial and axial coordinates on one hand 
side and the time and hoop coordinates on the other side are separated. After this 
variational formulation follows and finite element-like procedure is employed in 
the coordinate system rz0 . In radial direction linear approximation of 
displacements is supposed and in the sense of the generalized plane strain also 
linear distribution of displacements in axial direction is introduced. Simply 
supported segment is considered in our case, but more general supports can be 
involved using given moments at the end points, the clamped edge can be 
simulated, for example.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 5: Contour lines of displacements in millimeters measured at the 
tunnel face during model experiment after simulation of the 
extended length of the work-out space. 

     As an example of application of the above described approach a dumping 
layer for dissipation of energy after application of explosive load is considered in 
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various laminates. Two first natural (eigen) frequencies are observed dependent 
on the positioned in the structure of the arch. It appears that the most promising 
case is that, which is defined by positioning the dumper to the outer boundary.  
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