
Static load distribution in ball bearings 
including the effects of temperature and fit 

M. Ricci 
Space Mechanics and Control Division, INPE, Brazil 

Abstract 

A numerical procedure for internal loading distribution computation in statically 
loaded, single-row, angular-contact ball bearings, subjected to a known 
combined radial and thrust load, which must be applied so that to avoid tilting 
between inner and outer rings, is used to find the load distribution differences 
between a loaded unfitted bearing at room temperature, and the same loaded 
bearing with interference fits, such might experience radial temperature gradients 
between inner and outer rings. For each step of the procedure it is required the 
iterative solution of Z + 2 simultaneous non-linear equations – where Z is the 
number of the balls – to yield exact solution for axial and radial deflections, and 
contact angles.  
Keywords:  ball, bearing, static, load, numerical, method, temperature, fit. 

1 Introduction 

Ball and roller bearings, generically called rolling bearings, are commonly used 
machine elements. They are employed to permit rotary motions of, or about, 
shafts in simple commercial devices such as bicycles, roller skates, and electric 
motors. They are also used in complex engineering mechanisms such as aircraft 
gas turbines, rolling mils, dental drills, gyroscopes, and power transmissions. 
     This work is devoted to study of the internal loading distribution in statically 
loaded single-row angular-contact ball bearings. Several researchers have studied 
the subject as, for example, Stribeck [1], Sjoväll [2], Jones [3] and Rumbarger 
[4]. The methods developed by them to calculate distribution of load among the 
balls and rollers of rolling bearings can be used in most bearing applications 
because rotational speeds are usually slow to moderate. Under these speed 
conditions, the effects of rolling element centrifugal forces and gyroscopic 
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moments are negligible. At high speeds of rotation these body forces become 
significant, tending to alter contact angles and clearance. Thus, they can affect 
the static load distribution to a great extension. 
     Harris [5] described methods for internal loading distribution in statically 
loaded bearings addressing pure radial; pure thrust (centric and eccentric loads); 
combined radial and thrust load, which uses radial and thrust integrals introduced 
by Sjoväll; and for ball bearings under combined radial, thrust, and moment load, 
initially due to Jones. 
     There are many works describing the parameters variation models under static 
loads but few demonstrate such variations in practice, even under simple static 
loadings. The author believes that the lack of practical examples is mainly due to 
the inherent difficulties of the numerical procedures that, in general, deal with 
the resolution of several non-linear algebraic equations that must to be solved 
simultaneously. 
     In an attempt to cover this gap studies are being developed in parallel [6–10]. 
In this work a numerical procedure, described in [7], for internal load 
distribution computation in statically loaded, single-row, angular-contact ball 
bearings subjected to a known external combined radial and thrust load, so that 
no tilt is allowed between inner and outer rings, is used to find the load 
distribution differences between a loaded bearing with clearance fits at room 
temperature, and the same loaded bearing with interference fits, such might 
experience radial temperature gradients between inner and outer rings. 
     In the most usual situation, angular contact bearings would first be fitted, with 
interference or clearance defined at room temperature, to their respective shaft 
and housing; then a defined axial “hard” preload would be applied and 
subsequently in operation the bearings might experience radial temperature 
gradients between inner and outer rings. 
     Generally, ball bearings and other radial rolling bearings such as cylindrical 
roller bearings are designed to have a diametral clearance in the no-load state. 
Due to this radial clearance the bearing also can experience an axial play. 
Removal of this axial freedom causes the ball-raceway contact line to assume an 
oblique angle with respect to the radial plane; hence, a contact angle different 
from zero will occur. This angle is called free contact angle and is a function of 
clearance built into the unloaded bearing and the raceway groove curvatures. 
     Press or shrink fitting of the inner ring on the shaft causes the inner ring to 
expand slightly. Similarly, press fitting of the outer ring in the housing causes the 
former member to shrink slightly. Thus, the bearing’s diametral clearance will 
tend to decrease. 
     Thermal conditions of bearing operation can also affect the diametral 
clearance. Heat generated by friction causes internal temperatures to rise. This in 
turn causes expansion of the shaft, housing, and bearing components. Depending 
on the shaft and housing materials and on the magnitude of thermal gradients 
across the bearing and these supporting structures, clearance can tend to increase 
or decrease. It is also apparent that the thermal environment in which a bearing 
operates may have a significant effect on clearance. 
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2 Static load distribution under combined radial and thrust 
load in ball bearings 

Having defined in other works analytical expressions for geometry of bearings 
and for contact stress and deformations for a given ball or roller-raceway contact 
(point or line loading) in terms of load, it is possible to consider how the bearing 
load is distributed among the rolling elements. In this section a specific load 
distribution consisting of a combined radial and thrust load, which must be 
applied to the inner ring of a statically loaded ball bearing, so that no tilt is 
allowed between inner and outer rings, is given.  
     Let a ball bearing with a number of balls, Z, symmetrically distributed about a 
pitch circle according to Fig. 1, to be subjected to a combined radial and thrust 
load, so that a relative axial displacement, δa, and a relative radial displacement, 
δr, between the inner and outer ring raceways may be expected. Let ψ = 0 to be 
the angular position of the maximum loaded ball. 
     Figure 2 shows the initial and final curvature centers positions at angular 
position ψ, before and after loading, considering the centers of curvature of the 
raceway grooves fixed with respect to the corresponding raceway. If δa and δr are 
known, the contact angle at angular position ψ, after the combined load has been 
applied, is given by 
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where A is the distance between raceway groove curvature centers for the 
unloaded bearing, βf is the free-contact angle and δn is the total normal deflection 
at the contacts. 
     Also, from Fig. 2, 
 

 ( ) fna AA ββδδ sinsin −+= , (2) 
 

and we can arrive in the expression for the extend of the loading zone, that is 
given by 
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     From (1), the total normal approach between two raceways at angular position 
ψ, after the combined load has been applied, can be written as 
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     From Fig. 2 and (4) it can be determined that s, the distance between the 
centers of the curvature of the inner and outer ring raceway grooves at any 
rolling element position ψ, is given by 
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Figure 1: Ball angular positions in the radial plane that is perpendicular to the 
bearing’s axis of rotation, ∆ψ = 2π/Z, ψj = 2π/Z(j−1). 

 
 
 
 
 
 

 

Figure 2: Initial and final curvature centers positions at angular position ψ, 
with and without applied load. 
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     From (2) and (5) yields, for ψ = ψj, 
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     From load-deflection relationship for ball bearings and (4) yields, for ψ = ψj, 
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     If a thrust load, Fa, and a radial load, Fr, are applied then, for static 
equilibrium to exist 
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     Additionally, each of the normal ball load components produces a moment 
about of the inner ring center of mass, in the plan, which passes through the 
bearing rotation axis and contains the external radial load (moments about 
the other two perpendicular plans are self-equilibrating). For static equilibrium, 
the thrust load, Fa, and/or the radial load, Fr, must exert a moment, M, about of 
the inner ring center of mass, which must be equal the sum of the moments of 
each rolling element load, that is, 
 

 ( )[ ]∑
=

−+−=
Z

j
rjjrijj RQM

1
coscossin δψψδβ , (10) 

 

where 
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expresses the locus of the centers of the inner ring raceway groove curvature 
radii. 
     Substitution of (7) into (8) yields 
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     Similarly, 
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     Equations (6), (11) and (12) are Z + 2 simultaneous non-linear equations with 
unknowns δa, δr, and βj, j = 1,…, Z. Since Knj are functions of final contact angle, 
βj, the equations must be solved iteratively to yield an exact solution for δa, δr 
and βj. 
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3 Numerical results 

To show an application of the theory developed in this work a numerical 
example is presented, which uses      The Newton–Rhapson method to solve the 
simultaneous nonlinear equations (6), (11) and (12). To take into account the 
effects of temperature and fitting I have considered the principal relationships 
between interference fittings, thermal gradients, surface finish and changes in 
diametral clearance, as described in [5]. 
     I have chosen the 218 angular-contact ball bearing as example, which was 
also used by [5]. The 218 angular-contact ball bearing has a 0.09 m bore, a 0.16 
m o.d. and is manufactured to ABEC 7 tolerance limits. The bearing is mounted 
on a hollow steel shaft of 0.0635 m bore with a k6 fit and in a titanium housing 
having a effective o.d. of 0.2032 m with an M6 fit. Considers that the inner ring 
operates at a mean temperature of 148.9oC, that the outer ring is at 121.1oC and 
that the bearing was assembled at 21.1oC. 
     There are three steps in the numerical procedure. The first, considering the 
bearing unfitted at assembling temperature; the second, considering the fits 
above at assembling temperature; and the third, considering the fits above at 
operational temperatures for the inner and outer rings. Before each step the 
geometry of the bearing is obtained from which, the nonlinear equations are 
solved simultaneously to obtain radial and axial deflections and contact angles. 
     Figs. 3 to 12 show some parameters, as functions of the applied thrust load, 
for the three steps of the procedure and for some values of the applied radial 
load. 
     Figs. 3 and 4 show the normal ball loads for the maximum and minimum 
loaded ball, respectively. There is a better loading distribution with the increase 
of thrust load; and there are slight decreases (increases) in normal ball load, for 
the maximum (minimum) loaded ball, when it passes from first to second, and  
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Figure 3: Normal ball load for the maximum loaded ball, Q(ψ = 0), as a 
function of the thrust load, Fa. 
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Figure 4: Normal ball load for the minimum loaded ball, Q(ψ = 180o), as a 
function of the thrust load, Fa. 

from second to third steps. Similar behavior is also observed for other parameters 
and will not be mentioned here. For this loading range, the ball at angular 
position ψ = 0 is always loaded. This is not the case for the ball at angular 
position ψ = 180o. For zero applied radial load the normal ball load is the same 
for the maximum and minimum loaded ball. 
     Figs. 5 and 6 show the contact angle for the maximum and minimum loaded 
ball, respectively. The straight lines represent the free contact angles for the three 
steps of the procedure. For zero applied radial load the contact angle is always 
greater than the free contact angle. In this case, the bearing is under thrust 
loading and all balls have the same load and contact angles. If the contact angle 
falls below the free contact angle the balls are unloaded. With the increase in 
applied radial load the free contact angle ceases to be a reference for unload. In 
this case, the contact angle may drop to values much lower than the free contact 
angle value - as low as 3o - for a loaded ball, or may rise to values greater than 
the free contact angle value, for an unloaded ball. 
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Figure 5: Contact angle for the maximum loaded ball, β(ψ = 0), as a function 
of the thrust load, Fa. 
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Radial and Thrust Load – 218 Angular-contact Ball Bearing 
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Figure 6: Contact angle for the minimum loaded ball, β(ψ = 180o), as a 
function of the thrust load, Fa. 

     Figs. 7 and 8 show the distance between the curvature centers for the 
maximum and minimum loaded ball, s, respectively. The straight lines represent 
the curvature centers distance in the shifted (unload) position, A. Simply remove 
A from s for total deformation along the contact line. If s falls below A is an 
indication of unloading. 
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Figure 7: Distance between the curvature centers for the maximum loaded 
ball, s(ψ = 0), as a function of the thrust load, Fa. 
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Figure 8: Distance between the curvature centers for the minimum loaded 
ball, s(ψ = 180o), as a function of the thrust load, Fa. 
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Figure 9: Loading zone, ψl, as a function of the thrust load, Fa. 

     Fig. 9 shows the loading zone. The straight lines represent the angular ball 
positions. Under radial load, increasing the thrust load there is an increase of the 
loading angle, whose maximum value is 180o. 
     Figs. 10 and 11 show the axial and radial deflections, respectively. 
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Figure 10: Axial deflection, δa, as a function of the thrust load, Fa. 
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Figure 11: Radial deflection, δr, as a function of the thrust load, Fa. 
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Figure 12: Moment of the normal ball loads about inner ring center of mass, 
M, as a function of the thrust load, Fa. 

     Fig. 12 shows the moment, M, such must be exerted by the thrust load, Fa, 
and/or the radial load, Fr, about of the inner ring center of mass, in order of 
prevent the angular displacement of the inner ring with respect the outer ring. 
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4 Conclusion 

This work used a procedure for get numerically, accurately and quickly, the 
static load distribution of a ball bearing under axial and radial loading, taking 
into account the influence of fits and thermal gradients. Precise applications, as 
for example, space applications, require a precise determination of the static 
loading. Models available in literature are approximate and often are not 
compatible with the desired degree of accuracy. This work can be extended to 
determine the loading on high-speed bearings where centrifugal and gyroscopic 
forces do not be discarded. The results of this work can be used in the accurate 
determination of the friction torque of the ball bearings, under any operating 
condition of temperature and speed. 
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