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ABSTRACT 
Protection against terrorist assaults is a major concern for many countries all over the world. It entails 
developing counter-terrorism intelligence and intervention means, allowing the avoidance of such 
events but also to be able to rapidly (but efficiently) predict the structural effects of attacks on buildings. 
In previous works carried out at CEA/Gramat, an analytical approach was developed to promptly obtain 
the response of a rectangular masonry panel submitted to the blast effects of an aerial explosion. In this 
approach, the panel was simulated as a single-degree-of-freedom system with an elastic and perfectly 
plastic behaviour and the blast loading was reduced to a triangular pressure profile. The purpose was to 
predict either the failure of the panel or its survival. Besides, free-field experiments and corresponding 
FEM calculations led one to identify sets of parameters for various structural materials such as concrete, 
cinderblocks and bricks. The present study aims to enhance the binary result of the model towards an 
interval of failure/survival probability with a confidence level. Through the example of a unique generic 
wall, we present the modelling of the uncertainties in both geometric and material parameters, the use 
of the Monte-Carlo method, and the interpretation of the obtained probability density functions. A 
sensitivity analysis emphasizes the parameters for which a better insight is needed. Finally, a practical 
case of an isolated building with multiple walls is examined. Hypothesis and results are discussed and 
potential improvements are considered. 
Keywords:  blast, masonry strength, failure probability, fast running engineering model, Monte-Carlo, 
sensitivity analysis. 

1  INTRODUCTION 
The evaluation of aerial explosion blast effects onto buildings is a complex matter  
usually studied with the help of descriptive numerical finite elements simulations. This  
time-consuming approach requires a good knowledge of the characteristics of the structure 
and the explosive charge because only a few of these heavy computations will be run. In the 
emergency case of a malicious threat, the descriptive approach is evidently not quick enough 
to reliably gauge an evacuation area before the explosion. 
     That is why previous vulnerability studies conducted at CEA/Gramat led to the 
development of a fast-running engineering model (FREM) simulating a masonry panel 
submitted to the aerial effects of an explosion as a single-degree-of-freedom (SDOF) system 
loaded by a triangular pressure profile. The main eqns of the model are briefly clarified in 
Section 2. The identification of the parameters, based on comparisons between experimental 
results and finite element method (FEM) computations, is also explained. 
     However all the parameters of the problem are not always perfectly known. For example, 
if the building and its blueprints are inaccessible, the dimensions of its masonry panels will 
be unlikely to be precisely estimated. Even if the construction material is known, its 
properties can be rather different from those of the same material used for another building. 
A lack of knowledge may also exist about the characteristics of the explosive charge. Given 
all these uncertainties and others, a vulnerability study cannot reasonably lead to a clear-cut 
result. Thus, the Monte-Carlo method has been used to propagate uncertainties through the 
FREM, a work described in Section 2. 
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     Section 3 gives an example of our approach on a unique plain-brick panel. An effort is 
made on the interpretation of the results insisting on the difference between deterministic and 
stochastic results. Thanks to a Morris’ analysis, the most sensitive parameters have been 
identified and the effects of the reduction of their respective uncertainties are underlined. 
     Finally, Section 4 presents an example of a three-floor isolated building composed of 
multiple walls for which the vulnerability assessment has to be inquired. The analysis of the 
results allowed one to determine a security perimeter for an accepted probability of damage 
associated with a given confidence level. 

2  ANALYTICAL MODELING 

2.1  Masonry panel as a SDOF system 

The analytical model used in this study is inspired by the work in references [1]–[3]. It gives 
the Pressure Impulse diagram of an elastic and perfectly plastic SDOF system subjected to a 
triangular load. The analytical P-I diagram is then extended to masonry panels. The 
rectangular panel response is supposed to be elastic when the panel deflection is lower than 
the elastic deflection xe. Between the elastic deflection xe and the maximum panel deflection 
xmax, the panel behaviour is supposed to be perfectly plastic. The panel fails when its 
maximum deflection xmax is reached. The material ductility  is defined by: 
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ൌ 𝛿. (1) 

 
     The maximum deflection 𝑥max is deduced on the one hand from the characteristics of the 
wall (mechanical behaviour, dimensions and boundary conditions) and, on the other hand 
from the loading level (pressure and impulse) following the expression 
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whilst the elastic deflection 𝑥௘ depends only on the panel characteristics: 
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     In the above eqns, 𝑃 and 𝐼 are the pressure and impulse born by the masonry panel. Their 
values are calculated interpolating abacus from US Department of Defense [4] with respect 
to the explosive mass and to distance and angle between the panel and the explosive. 𝜎max, 𝜌 
and 𝐸 are the maximum admissible stress of the panel’s material, its density and its elastic 
modulus, respectively. 𝑒 is the thickness of the masonry whereas 𝐿 and 𝑙 are its longest and 
shortest dimensions. 𝑎, 𝑏 and 𝑐 are coefficients depending only on the ratio 𝑥max 𝑥௘⁄ . 
Boundary conditions at the four sides of the panel are taken into account by the parameters 
𝑎௅ ௟⁄
௜ , 𝑐௅ ௟⁄

௜  and 𝑑௜ where the index 𝐿 𝑙⁄  implies a dependence on this ratio. 
     Finally, it may be noted that, eqn (2) being irreversible according to 𝑥max, a zero-finder 
numerical algorithm such as Newton’s is needed to identify the maximum deflection for a 
given pressure-impulse couple. 
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2.2  Identification method for the model parameters 

A specific procedure has been developed in order to identify the panel material parameters 
𝜎max, E, xe and   that is outlined for plain bricks in the following. As a first step, experimental 
tests are performed on masonry walls submitted to the blast effects of an explosive charge. 
In these experiments the wall edges are rigidly maintained by a massive steel frame in such 
a way that edge rotations are impossible. Several tests are carried out and the distance 
between the charge and the wall is reduced in order to increase the damage level. In the last 
test, the wall is highly damaged and debris are thrown away from the wall. 
     In a second step, advanced FEM simulations are performed using ABAQUS explicit code. 
The blast loading is simulated using the Conwep module [5]. Here, a M1-kg spherical charge 
detonates at 0.6 m from the wall front face the dimensions of which are 2×2×0.105 m. The 
mesh size is 2×1.25×1.75 cm (horizontal × vertical × thickness). The brick and the mortar 
behaviour are simulated using the advanced PRM concrete material model [6]. Material 
parameters like the maximum compressive strength, the maximum tensile strength, the 
fracture energy, etc. are then fitted in order to reduce as much as possible the gap between 
numerical and experimental results. In these simulations, the mortar strength is assumed to 
be two times less than the brick one. Fig. 1 compares experimental and numerical results of 
this case at three different instants.  
 

  

  
25 ms 30 ms 35 ms 

Figure 1:    Deflection of the back face of the wall. Comparison between experimental 
(upper part) and numerical (lower part), results obtained on a brick wall under 
blast effects. 
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     Using the fitted material parameters, FEM simulations are then carried out on brick walls 
loaded by a uniform and increasing pressure. A specific numerical procedure is used in order 
to prevent unstable structure response. Pressure loading is applied to the wall thanks to an 
incompressible fluid. A displacement is imposed on one side of the fluid while the other face 
exerts pressure on the wall in such a way that the wall is both subjected to uniform pressure 
and to controlled displacement. In this quasi-static numerical simulation, the applied pressure 
is plotted versus the wall deflection. Two quasi-static simulations are performed, one with a 
0.105-m-thick thin wall which is the one used in the experiments and the other with a  
0.210-m-thick wall. The brick orientation is different for the thickest wall where the brick 
length corresponds to its thickness. In that case, the distance between two mortar joints is 
consequently lower in the horizontal direction. Fig. 2 shows the responses of both walls under 
the quasi-static loading. The curves on the lower part correspond to the evolution of the 
applied pressure versus the panel deflection, the red one accounts for the thicker wall and  
the blue one for the thinner. They are approximated by two linear and perfectly plastic curves 
(dashed curves) for which the maximum deflection has been chosen in order to conserve 
deformation energy, i.e. the areas under the dashed curves are equal to the areas under  
the solid ones. 
     These perfectly plastic curves are then used to identify the material parameters of eqns 
(1–3): the equivalent Young modulus E, the maximum strength 𝜎max, the elastic deflection xe 

and the ductility 𝛿 In this particular case, a not obvious fact is that the material strength 𝜎max 
of the thin wall is by 29% higher than the one identified for the thick wall. This result can be 
interpreted considering the brick arrangement. As mentioned before, for the thick wall, 
vertical mortar joints are closer to each other and mortar has been assumed to be two times 
less resistant than brick. That is surely why the numerical material strength of the thick wall 
is comparatively weaker, a point that has not been experimentally checked yet. 
 

 

Figure 2:    Numerical simulation of the response of plain brick walls under uniform pressure 
loading. Dashed curves account for elastic and perfectly plastic behaviour. 
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     One may regret the absence of additional experiments on identical brick walls but with 
different dimensions, border conditions and/or damage level to validate the parameters and 
the model. The significant cost of such a full experimental campaign explains this lacuna. 
     Finally, the identification procedure presented above can be applied for any other type of 
masonry walls such as stone, hollow brick, hollow concrete block, concrete, etc. 

2.3  Monte-Carlo method 

As indicated in the introduction, the result of a serious vulnerability study cannot be  
clear-cut because of the doubts about the problem characteristics. The Monte-Carlo method 
is a well-known means of propagating the input parameters’ uncertainties through a model 
in order to quantify uncertainties in its results. 
     Let us consider on the one hand the 𝑚 parameters 𝜗௜ of the study including the model 
parameters, the distance between the explosion point and the masonry and, the hypothetical 
mass of the explosive charge. Consider on the other hand the material ductility 𝛿. Each of 
them is modelled as a random variable the form and characteristics of which are known or 
assumed (Normal, Uniform, etc.)  
     The Monte-Carlo method, illustrated in Table 1, consists in 𝑛 draws randomly exploring 
the hyperspace of the 𝑚 ൅ 1 stochastic parameters (including 𝛿) and leading to 𝑛 
computations each producing a value of 𝑥max 𝑥௘⁄ . Statistics of the 𝑛 results can be analyzed 
regarding the statistics of 𝛿 as it will be exemplified in the next section. 
     It may be noted that 𝑛 must be large, typically between 1,000 and 1,000,000, in order to 
obtain statistically representative results. If computations are not fast enough to be performed 
in a reasonable time, their independence allows one to execute them simultaneously on 
multiple processing units.  
 

Table 1:  Scheme of a 𝑛-draws 𝑚-parameters Monte-Carlo experiment plan. 

Computation 
Parameters Result 

𝜗ଵ 𝜗ଶ …  𝜗௠ 𝛿 𝑥max 𝑥௘⁄  
#1  …  
#2  …  
… … … … … … … 
#𝑛   …    

3  APPLICATION TO A MASONRY PANEL 

3.1  Study case 

As a first application, we consider a 3-m-height, 6-m-long and 0.22-m-thick plain-brick wall 
whose four borders are embedded. An M2-kg exploding charge is located in front of the centre 
of the wall at a deterministic normal distance 𝑑 varying from 4 to 20 m. The charge is 
supposed spherical. 
     All the parameters are stochastic and modelled as independent Normal (Gaussian) random 
laws: the three dimensions of the wall 𝐿, 𝑙 and 𝑒 and the failure stress 𝜎max have a standard 
deviation (StD) set to 10% of their mean value. In the case of 𝜌 and 𝐸 it is set to 5%. 
Concerning the ductility 𝛿, 10% has also been chosen. Histograms of the ten thousands 
draws, obtained with the Python package numpy.random, are displayed in Fig. 3. 
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Figure 3:    Normalized histograms of the six stochastic parameters of the model (10,000 
draws). Values for material parameters (first line) are voluntarily not displayed. 

3.2  Results and analysis 

The 10,000-iterations Monte-Carlo simulations are performed for different charge – wall 
distances between 4 and 20 meters with a 0.5-m-step. Histograms of 𝑥max 𝑥௘⁄  are converted 
into probability density functions (pdf) thanks to the Gaussian kernel density estimator from 
scipy.stats, using the Scott’s bandwidth method [7]. These pdfs (grey) are compared to the 
ones of 𝛿 (red) as shown in Fig. 4 for selected distances. The probability of failure of the wall 
for any value 𝛥 of 𝛿 (percentiles or maximum likelihood) is trivially obtained integrating the 
pdf of 𝑥max 𝑥௘⁄  where 

௫max
௫೐

൒ 𝛥. Titles of Fig. 4 give the most plausible probability of failure 

for each distance along with the confidence interval (CI) at 95%. For example, at 12 meters, 
there is an excellent confidence (95%), given the problem data, that the failure probability 
might be between 3% and 23%.  
     As displayed in Fig. 5, those results can be summarized as a hysteresis diagram of failure 
probability vs distance for the 95% confidence interval. For comparison, the binary result 
obtained with the deterministic method, for which each parameter takes its mean as unique 
value, is also shown (black line). Note that the width of the hysteresis is mainly governed by 
the material ductility standard deviation whereas its slope relies to the standard deviations of 
all parameters (this point will be established in the next section). Regarding building 
vulnerability against terrorist attacks, it may help to identify at which distance an explosive 
charge presents a significant risk, contributing to defining the extent of potential  
high-security areas. Nevertheless, in this particular case, the destiny of the wall is not 
guaranteed between 6 and 16 m, a quite important range of uncertainty that could be reduced 
thanks to a better insight of the parameters. 
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Figure 4:    Monte-Carlo simulations for distances 4, 8, 12 and 18 m. Grey area: pdf of 
𝑥max 𝑥௘⁄ . Red area: pdf of 𝛿 (values not displayed). Note the log-scale on x-axis. 

 

Figure 5:    Summary of the Monte-Carlo simulations at distances between 4 and 20 m. 
Confidence levels are given according to the failure point of view (pov) in 
opposition to the survival one. Red area denotes the failure probability within 
the 95% confidence interval. For comparison, the deterministic result is also 
displayed (black).  
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3.3  Sensitivity analysis 

Up to this section, lump uncertainties on geometrical and physical parameters have not been 
discussed even though they are directly responsible of the general trends of Fig. 5. And yet, 
it might be profitable to identify on which parameters efforts should be concentrated to 
significantly reduce uncertainties on wall destiny. 
     The sensitivity of the wall failure to the model parameters has been studied through 
Morris’ sensitivity analyses [8] with the SALib package. Intervals of variation of the 𝜃௜ 
parameters were equal to their 95% confidence interval which are, since exclusively Normal 
laws have been used, [ሺ1 െ 2𝜏௜ሻ𝜃ప´  ; ሺ1 ൅ 2𝜏௜ሻ𝜃ప´ ] where 𝜃ప´  is their mean value and 𝜏௜ their 
standard deviation in percent. Given those intervals, Fig. 6 evidences at a distance of 10 m, 
the dominant sensitivity of the wall thickness 𝑒 and the material strength and ductility 𝜎max 
and 𝛿. At other distances, results are qualitatively identical even though the respective 
sensitivities of the parameters are narrowed; a logical fact as 10 m is located at the heart of 
the hysteresis where results are the most indeterminate. It is noted that the sensitivity  
of parameters is only analysed on the binary outcome “failure” or “survival”, meaning the 
effect of 𝛿 on the 95% CI of Fig. 5, i.e. the width of the hysteresis, is not considered. 
     Such results encourage enhancing the knowledge of the most sensitive parameters. As an 
illustration, Fig. 7 compares the original hysteresis of Fig. 5 to results produced after dividing 
by two the standard deviation 𝜏௜ of some parameters. As explained before, (b) and (d) 
demonstrate that 𝛿 strongly influences the width of the hysteresis. Besides, (c) demonstrates 
the effect of 𝑒 and 𝜎max on the slope but not on the width. Finally, a better insight into those 
three parameters led to a reduction from (6;16) to (7.5;13) m, the distance interval where the 
masonry panel destiny is not guaranteed. In the view of building protection, this is a key 
result for the definition of safety area. Obviously, it also could be valuable to reduce the 
uncertainties on other model parameters although they are less sensitive. 

 

 

Figure 6:    Morris’ sensitivity analysis of model parameters on the wall failure/survival at 
10 m. Regarding their 95% CI, thickness 𝑒, strength 𝜎max and ductility 𝛿 reveal 
a high sensitivity. Scores of other parameters are lower and quite comparable. 
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(a)  

 
 (b) 

 
(c) 

 
(d)

Figure 7:    Summaries of the Monte-Carlo simulations at distances between 4 and 20 meters 
for different uncertainties on the model parameters. Red bold font: differences 
with reference. Confidence levels given according to the failure pov in 
opposition to the survival one. (a) Reference: standard deviations of section 3.2; 
(b) Effect of uncertainties on 𝛿; (c) Effect of uncertainties on 𝑒 and 𝜎max; and  
(d) Effects of uncertainties on 𝑒, 𝜎max and 𝛿.  

4  APPLICATION TO BUILDINGS 
The generalization of our approach to buildings with multiple panels needed a better 
efficiency of the routines used previously. Thus, in the following, Python has been replaced 
by Java, which is a more highly performing language when numerous executions of the same 
routines are expected. 

4.1  Study case 

Consider a three-floor rectangular plain-brick building. Two frontages are composed of nine 
masonry panels and the two others are made of six. Each of them is in every respect the same 
as the one previously studied (6×3×0.22 m, see Section 3.1). The roof is not modelled. 
Consider besides an explosive spherical charge of M2 kg located at an altitude of 1.5 m near 
the building. We are interested in two vulnerability analyses: 

 The location of the charge is known and its capacity to damage the building has to 
be evaluated; 

 A security perimeter against this threat has to be defined in order to avoid reasonable 
risk of damaging any part of the building. 

𝜏௅ = 10% 

𝜏௟ = 10% 

𝜏௘ = 10% 

𝜏ఙ = 10% 

𝜏ఘ = 5% 

𝜏ா  = 5% 

𝜏ఋ  = 10%

𝜏௅ = 10% 

𝜏௟ = 10% 

𝜏௘ = 10% 

𝜏ఙ = 10% 

𝜏ఘ = 5% 

𝜏ா  = 5% 

𝜏ఋ  = 5% 

𝜏௅ = 10% 

𝜏௟ = 10% 

𝜏௘ = 5% 

𝜏ఙ = 5% 

𝜏ఘ = 5% 

𝜏ா  = 5% 

𝜏ఋ  = 10% 

𝜏௅ = 10% 

𝜏௟ = 10% 

𝜏௘ = 5% 

𝜏ఙ = 5% 

𝜏ఘ = 5% 

𝜏ா  = 5% 

𝜏ఋ  = 5% 
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4.2  Case of a known location 

Monte-Carlo simulation has been performed with 100,000 draws for each panel of the 
building, resulting in a total of 3,000,000 iterations. Partial results are shown in Fig. 8.  
The spherical charge appears in red and was located near a corner of the building at an altitude 
of 1.5 m. A top view points out its exact location. Values and colours displayed on masonry 
panels of the 3D view correspond to the probability of failure 𝑃௙ for a confidence level of 
97.5%. It means there is only 2.5% of risk to underestimate the failure probability. It appears 
that mainly two walls are dangerously threatened (𝑃௙ ~ 100%, purple), one seems to be 
moderately in peril (𝑃௙ ~ 33%, green) and all the others are almost out of danger  
(𝑃௙ < 5%, blue). Note that this result has been acquired within only about 35 seconds using 
one processing unit, a reasonable delay in an operational context. 
 

 

Figure 8:    Failure probabilities (%) of the masonry panels of a building submitted to the 
blast effect of a spherical M1-kg charge. Results given for a 97.5% confidence 
level meaning they have 2.5% of risk to be underestimated (survival pov). 

4.3  Case of the security perimeter 

Considering the same building, the same explosive charge and the same altitude of explosion, 
it might be convenient to define a security perimeter prior any real threat. Guided by the 
results of section 3.2, the geographic area to be considered around the building is between 4 
and 20 meters from the frontages. This area is meshed in both directions every 0.5 m 
generating about 14,000 cells. For each cell, a Monte-Carlo simulation similar to the one of 
the previous section has been performed. Partial results are displayed in Fig. 9 as top-view 
colour maps where the six panels of the roof appear in grey. Colours account for the number 
of masonry panels of which 𝑃௙ is greater than a chosen value 𝑃௙

௧௛, according to the 97.5% 
confidence level (survival pov). Note that results are not exactly symmetrical because of the 
stochastic aspect of the Monte-Carlo method. 
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(a) 

 
(b)

Figure 9:    Number of panels for which 𝑃௙ ൐ 𝑃௙
௧௛ according to the location of the explosion. 

(a) 𝑃௙
௧௛ = 1%; (b) 𝑃௙

௧௛ = 20%. Results given for a 97.5% confidence level 
according to the survival pov. Grey squares: roof panels. 

     Thanks to these colour maps, a security perimeter appears clearly depending on the 
accepted risk. For example, if no panel must be destroyed with a probability greater than 1%, 
Fig. 9(a) indicates an exclusion area of around 45×50 m while if this probability is set to 20%, 
Fig. 9(b) specifies an area of 38×45 m. Obviously, a decrease of the confidence level would 
significantly decrease the area as well. 
     Computations leading to the results of Fig. 9, i.e. about 1.4 billion iterations, took about 
three and a half hours with 48 processing units running in parallel. It seems a negligible time 
as regards a context of training on securing strategic buildings. 

5  CONCLUSION 
Previous works led to modelling masonry panels as SDOF systems using analytical 
expressions. Such a fast-running engineering model (FREM) drastically decreased 
computation times of vulnerability studies compared to classical descriptive models. 
Experiments and FEM simulations helped to identify constitutive parameters of the FREM 
for various masonry materials. 
     This work aimed to use the uncertainties in material and geometric properties of masonry 
panels to get a better insight to the results of the model. The Monte-Carlo method has thus 
been used along with the Morris sensitivity analysis, both giving rich and complex 
information that has been clarified. Finally, a generalization of the approach to buildings with 
multiple panels has been conducted allowing advanced and time-efficient vulnerability 
studies either in emergency context or in case of safeguarding preparation. 
     Future work should consist in new experiments on brick walls as in Section 2.2 but with 
different dimensions, border conditions and/or damage level in order to validate the model 
and the parameters obtained in this study. Other masonry materials could also be investigated 
following our procedure. Additional work may concern the improvement of the SDOF model 
in order to take into account the presence of openings (windows, doors, etc.) on the masonry 
panel that, however, might not be a trivial study. Moreover, to consider other geometries than 
rectangular panels could be an interesting and useful work because of the irregular and 
particular shapes more and more used in modern western buildings. 
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