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ABSTRACT 
This paper is aimed at studying the influence of loading due to shock (strike) waves in an enclosed 
space; underground parking is a typical example. The problem which is to be solved is divided into 
the description of motion and pressure in the air and in the solid phase, separately; the interaction of 
the effects arising in the air and the solid phase are concentrated along the boundary interface between 
the two media. As the free hexagon method (discontinuous boundary element method) has proved to 
be well applicable in solving nonlinear problems in structures, it is also used, slightly adjusted, here. 
In order to connect both mediums (structure, air), the gas-dynamics in the air is described, based on 
equations of conservations, by a simplified finite volume elements, their shapes are also hexagonal, to 
be in geometrical compliance with the rock and structure. The hexagonal shapes are arbitrarily, i.e. 
not necessarily honey combs, like mostly used in connection with finite elements. Note that such a 
shape of elements complies with the requirements for the finite volume method. The BEM describes 
the elasticity, or nonlinear behavior inside of each hexagonal element of the solid phase, while the 
mechanical behavior on the interfaces between the adjacent elements obeys the laws of Mohr-
Coulomb localized damage.  
Keywords:  discrete element method, free hexagon method, discontinuous boundary element method, 
finite volume method, impact of explosion in closed space, underground parking. 

1  INTRODUCTION 
The aftermath of explosion due to various causes, either intentional (bomb attacks, VBIED, 
suicide bomber), or accidental (gas explosion) are very dangerous if occurring in a free 
space. The solution of such a problem is complicated because of nonlinear nature of 
equations of conservations. On the other hand, the problem becomes much more complex, 
if the explosion appears in a closed space, as the shock waves interfere with reflected waves 
and local aftershocks. Consequently, the question, if the structure is safe against the 
influence of the pressure induced by the explosion and if so to which extent, is naturally 
much more difficult. This question belongs to the most serious tasks for engineers 
(underground engineers, for example) because of the commonly fatal consequences of 
explosion. This paper is focused on an assessment of impact of shock waves propagating in 
underground spaces, which can be underground parking, chambers, underground power 
stations, and such. Two basic problems are to be solved. The propagations of shock waves 
in a solid medium (structure, rock surrounding the structure), and in the air are considered. 
     Geodynamical problems (structure, rock) are often solved by discrete element methods. 
The obvious advantages of such models consist in possibility of introducing nonlinear 
phenomena to the elements and also concentrate on development of mechanical behavior 
along the boundaries between adjacent elements. In this way, both the local damage and 
plasticity in the solid phases can be taken into account. The large deformations also play an 
important role, as the aftermath of explosion causes fast changes of mechanical properties 
and large movements in both the solid phases and the air. The free hexagon method, as one 
of a discrete element method, seems to be appropriate for solving such problems.  
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     Note that the basic theory of propagation of shock wave and its impact on various 
structures is described in the Landau and Lifshitz (LL) book, [1]. The most inceptive 
solution is the Godunov approach starting with finite differences, [2], [3]. The latter and [4] 
proposed a powerful method: discontinuous finite elements. 
     In previous papers of the author, propagation of shock wave in a closed air space was 
discussed, based on nonlinear Godunov’s equations and experimental studies obtained in 
cooperating institutes, [1], [2]. 
     The free hexagons are published in [5], where the solution of statical case is proposed. 
Extension to dynamics with application in the effects of explosions initiated in a closed 
space can be found in [6]–[8], for example.  
     Interaction of pressure due to the shock wave and an arch shell is found in [9]. The 
effect of explosion in underground spaces was also published in WIT conferences; see [10], 
[11]. 
     A comprehensive book on finite volumes is [12], for example. The paper [13] is 
concerned with cell-centers finite volumes, which approximation is also used here for LL 
equations.  

 Other publications on the topic studied in this paper are worth noting [14]–[18]. 

2  FORMULATION AND NUMERICAL IMPLEMENTATION  
OF BASIC EQUATIONS 

As said before, the problem of interaction of the structure and the air the shock wave 
through which propagates is split into two sub-problems. The first one formulates and 
solves the mechanical behavior in a structure (rock, lining) and the second is concern with 
description of the change of the air movement and pressure based on LL gas- (fluid-, 
hygro-) dynamics. The first problem, the effect of sudden change of load of the solid 
structure, has previously been addressed in several papers based on the free hexagon 
method. Then the solution is relatively simple. It consists of prescribed behavior inside of 
the elements (plasticity, hereditary problems), and of given nonlinearities along the 
interfaces between the elements. On the other hand, the basic model considered hereinafter 
is pseudo-linear (pseudo-elastic) and the nonlinear Mohr-Coulomb localized damage is 
applied on the common interface between adjacent particles.   
     The solution of shock wave propagation in the air is more complicated, as the nonlinear 
behavior due to the effect of kinetic energy and other influences turn the problem to 
strongly nonlinear. Moreover, the set of basic equations of conservation has to be 
completed by additional relations, which involve chemical nature of the charge, 
thermodynamic constraints, etc.  
     Formulations of both sub-problems and their solutions in the frame of hexagonal 
elements are presented in the next text. As usual, the behavior of elements in the solid 
phase is described by boundary elements while in the air finite volumes are applied and the 
solution, in contrast to the solid phase behavior, is continuous. 

 The problem of propagating shock wave is focused on the situation in a tunnel. The 
charge is located at the bottom of the semi-circular cross-section of the tunnel, which is 
assumed sufficiently long to avoid the longitudinal effects of the propagating wave, and 
either narrow enough or wide enough, so the problem can be understood as two-
dimensional. In Fig. 1 an expected behavior of the system shock wave – structure (rock) in 
the early stage of time is depicted. The objective of this paper is to show what happens after 
the shock wave arrives at the interface air – the upper part of the tunnel lining.  
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Figure 1:  Situation in the tunnel after shock wave touches the lining. 

         

Figure 2:  Set up of adjacent particles and their possible shapes. 

2.1  Solution in one solid particle for position iteration 

First, basic ideas of the free hexagon method are briefly recalled. Both the solid phase and 
the air are defined in Cartesian coordinate system 21xOx , as the propagation of movements 

allows for narrowing the problem to two dimensions. Let the domain 2RS  describing the 

solid phase be partitioned into hexagonal particles niSi ,,1,  , elements, which are a 

priori mutually not connected. Possible geometry of particles and the set up of adjacent 
elements are seen in Fig. 1, where along the boundary abscissas of the interface springs in 
both normal and tangential directions are assumed.  
     Generally, inside each element non-linear mechanics can be introduced (plasticity, 
hereditary properties, viscous material).   
     In order to define the mechanical behavior on the interfacial boundary of arbitrary 
adjacent elements, a pseudo-cone K is introduced, which obeys the natural requirements on 
the interfaces of adjacent elements at any time due to the effect of shock wave (air 
movement) transferred to the solid phase:  

,0 if , ,0][ ,{ nnnnnn pppppuVK  u
 

 
,øtan)( nnnt pppcp  κ

                                                                  (1) 

 
}]sgn[øtanøtan)( if tntnnnt upppppcp  κ ,

 

where V is the set of regular functions in S , u is the vector of displacements, nu][ and 

tu][ are jumps of displacements in normal and tangential directions, respectively, np and 

tp are tractions in normal and tangential directions, respectively, 
np is the normal strength, 
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ø (the angle of internal friction) and c (shear strength) are positive material constants, κ  is 
the Heaviside function. The pseudo-cone expresses the following requirements: 

– There is no penetration (mutual overlapping) of the elements,
– Tensile strength cannot be exceeded on the interfaces,
– Mohr–Coulomb hypothesis is fulfilled in tangential direction.

     Free hexagon method provides a particle model, similar to classical PFC (Particle Flow 
Method), containing the following assumptions used specifically in this paper:  

– All particles are hexagonal, and either regular partition of the domain is considered
(honey combs), or the hexagons possess arbitrary convex shape.

– Linear material behavior is assumed inside of each particle, and is described by
boundary element method, with uniform distribution of both displacements and
tractions along the boundaries of the particles.

– The contacts are specified along the interfaces – abscissas – between adjacent
elements.

– Behavior along the contacts is considered as soft, based on the idea of a spring
connection in both the normal and tangential directions with respect to the
boundaries between adjacent elements.

– Bonds of a specified tensile strength 
np  exist at contacts between particles. The

tensile strength decides whether the split occurs in direction normal to the
interfaces.

     It is worth noting that in comparison to the classical PFC, the free hexagon method 
allows for the definition of stresses along the interfaces. 
     The solution of such a strongly non-linear problem is decomposed into two steps: the 
first one monitors the movements of the vertices in any specific particle at a time attained, 
which generates the deformation of the current particle in the fixed close ambience, and the 
second problem consists of a time-incremental scheme, which is discussed in the next 
section. In this way, the time dependent development is split into the solution of pseudo-
static phases. 
     The algorithm for the static cases is fully described in [5]. Knowing the form of kernels 
for 2D elasticity, the approximations of boundary displacements, tractions and volume are 
derived from the boundary element method leading to the following equations: 

QFKu      ,      (2) 

where K is a square matrix (12 * 12), not necessarily symmetric, u  is the vector of 
displacement approximations, F is the vector of approximated tractions, Q involve the 

influences of volume weight and here, moreover, involve also the effect of inertia forces. 
Both the latter vectors posses dimension (12*1). 

 For the next purpose, write the matrix eqn (1) as (indices 1 and 2 indicate that the 
system (1) is transformed to the directions 1x and 2x ): 

6,...,1,   ,,   222
22

1
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112
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1
11  jiQFuKuKQFuKuK iij
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     Considering volume weight and dynamical forces in the particle s  and displacements 
isis uu 21 ,  in adjacent elements, one gets for unknown sju1 and sju2 at the nodal points ( ijk are 

components of transformed spring stiffnesses, ijδ is the Kronecker delta, j is the number of 

adjacent element, being enumerated from 1 to 6, as the number of neighbors is at most 6): 
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 The latter system of equations is a system of 12 equations for 12 unknown 
displacements, six in 1x direction and six in 2x  direction. This system is always solved in 

any iteration step under assumption that the neighboring elements are considered fixed and 
the increment of displacements is taken from their values in the previous step.  

2.2  Algorithm for time involvement into the free hexagons 

The first level calculation cycle is time-stepping algorithm that requires the repeated 
application of the law of motion to each particle and a force-displacement law to each 
contact at the second level. Contacts, which may exist between the elements are formed and 
broken automatically during the course of simulation. At the start of each time-step, the set 
of contacts is updated from the known particles positions. The forces displacements law is 
then applied to each contact to update the contact forces based on the relative motion the 
two entities at the contact and the contact constitutive model. Next the law of motion is 
applied to each particle to update its velocity and position based on the resultant force and 
moment arising from the contact forces and any body forces acting on the particle. The 
computed solution will remain stable only if the time step does not exceed a critical time 
step, see [19]: 

}/,/{min sn
crit kIkmt  ,    (5) 

where nk  and sk are  the  average  normal  and  shear  stiffnesses, m   is  the  mass  of particle 
and I is the polar moment of inertia of the particle, calculated once in the beginning  
of calculation for each time-step. It means that I belong to the geometry in the 
undeformed state. 
     A critical time step cannot be stepped over for each particle separately to each degree of 
freedom. The final critical time step is taken to be the minimum of all critical time steps 
computed for all degrees of freedom of all particles. 
     The equations of motion can be expressed as two types of vector equations, one of 
which relates the resultant forces to the normal (translational) and tangential motion and 
other of which relates the resultant moment to the shear (rotational) motion. If the global 
coordinate system is 210 xx , in each particle the equation for translational motion and 

rotation have to be fulfilled and can be written in the vector form: 
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)( iii gxmF   , ωIM  ,        (6) 

where iF  are the resultant forces, the sum of all externally applied forces acting on the 

particle in i -th direction, m is the total mass of the particle, ix  is the acceleration and ig is 

the body force acceleration vector (e.g. loading due to gravity), I is the principal moment of 
inertia of the particle considered, ω is the angular acceleration. The translation and angular 
accelerations are calculated as:  

)(
1 2/2/ tt

i
tt

i
t
i xx

t
x δδ

δ
   , )(

1 2/2/ ttttt

t
δδ ωω

δ
ω   .      (7) 

     Inserting these velocities to the equations for motions and solving these equations for the 
velocities at time )2/( tt δ results in 

t
ii

tt
i

tt
i Fgtxxm   ]/)[( 2/2/ δδδ  ,   ttttt MtI   δωω δδ /)( 2/2/ .    (8) 

     Finally, the velocities are used to update the position of the particle centre: 

txxx tt
i

t
i

tt
i δδδ /)(2/   ,  txxx t

i
tt

i
tt

i δδδ /)(2/   ,     (9) 

where ix  are the coordinates of the nodes moved in time t . 

     Our aim is to calculate new positions of nodes in each particle. For this aim it is 
necessary to carry out transformations of coordinates from global and local coordinate 
systems, as described in [6], to get, among others (3). Note that in contradiction to PFC 
equilibrium of forces is attained on the boundary of the particles. The inertia forces have to 
be calculated from the displacements. 

2.3  Computational scheme for time iteration 
At the time t we know rotation φt , displacements xi

t and the same quantities at the previous 

time-step tt δφ  and tt
ix δ . From this it is also known tttttt δφφω δδ /)(2/   , t

iF and tM .

 Now applying the former forces and the time-increment of loading we get T
i

tt
i xx δ and 

Ttt φφ δ  from the algorithm mentioned in the previous section. Using the second formula 

(8), 2/2/ tT
i

tT xv δδ    immediately follows, v  is the vector of velocity. In order to get new 

inertia forces from the known position dependent iteration, [6], implicit time dependent 
iteration can be established. Since the number of degrees of freedom may be very 

extensive, for calculation of accelerations at time T the forces t
iF and moments tM are 

utilized. It means that (7) is applied in the sense of the mentioned assumption:  

t
ii

tT
i

tT
i Fgtxxm   ]/)[( 2/2/ δδδ  ,    ttTtT MtI   δωω δδ /)( 2/2/  (10) 
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and the new velocities of the particles 2/2/ , tTtTx δδ ω  are available from the previous 

formulas. Since the new positions of the nodes T
ix and accordingly the rotations Tφ  are 

known from the position iteration. The first relation (7) delivers txxx t
i

T
i

tT
i δδ /)(2/  , and 

moreover from definition ttTtT δφφω δ /)(2/  . Now T
i

tt
i FF δ and T

iM is obtainable 

from (6) setting tTtt δδ  :  and tTtt δδ  : . Updating all particles, the position 
iteration can take part according to [6]. 

2.4  Solution of the propagation of shock wave 

Mathematical model of the movements of points positioned in the air is based on the 
solution of equations of gas dynamics, which, for two-dimensional problem in Cartesian 
system of coordinates are listed as:  
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where: 
x, y        Cartesian coordinates [m] 

yx vv ,        components of the velocity vectors v, [m/msec] 

222

yx vvv        norm of the vector of velocity  

),,( tyxρρ         density of gas ][kg/m3   

),,( tyxpp         pressure of gas [MPa] 
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]2/)([ 22
yx vve  ερ        full energy of a unit of mass of the gas, [MPa] 

 
     The pressure due to explosion of TNT (Trinitrotoluene is a chemical compound with the 
formula C6H2(NO2)3CH3) charge can be recorded as:  
 

ρεγ )1( p ,                                                            (15) 

 
where γ is the exponent of adiabatic process. For the air it is mostly selected γ = 1.4, and in 
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the case of explosion the exponent of adiabatic process becomes only mass density 
dependent, i.e. γ = γ(ρ).  

 Let us denote 
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The equations of conservation (10)–(13) in vector form are then recorded as: 
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relies on the change of the control volumes between time  )1( nt and )(nt . Select arbitrary 
admissible i  and j  in such a way that SKi  and ZK j  are adjacent elements with 

common boundary P . Eqn (16) is then defined on S ×[t(n−1) ,t(n) ] and Z ×[t(n−1) ,t(n) ] , 
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because the number of boundaries (boundary abscissas) jS of S as well as jZ of Z is 

exactly six, where Sγd  and Zγd denote the integration with respect to the one-dimensional 

measure of the boundary of S and Z , respectively, j
Sn 1,  and j

Sn 2, are directional cosines of 

the outward unit normals to jS  and similarly j
Zn 1,  and j

Zn 2, are directional cosines of the 

outward unit normals to jZ . If . is the one or two-dimensional measures, eqns (24) may 

be written as: 
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where n
Ss  (resp. 0

Ss ) is an approximation of S
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relations are valid, if substituting S  for Z . 
     For two adjacent faces of two control volumes jS and kS it holds at any time t , 

0),(),( 11  txntxn kj , 0),(),( 22  txntxn kj , kj SSx  , hence the normal fluxes. 

     The time iteration has to be in compliance with the free hexagons, so that it obeys the 
rules defined in the section 2.2 with the exception that different variables appear in finite 
volume method. The nodal points are centered at the hexagonal elements.  

3  EXAMPLE 
An explosion in underground parking is supposed with the charge located on the bottom of 
a tunnel at the center of symmetry. The values of the radius of charge is 0.25 m for its mass 

q = 50 kg and the density of TNT TNTρ 3kg/m   1620 . Initial pressure of the charge is 

1.3 kN/cm2. 
     A simplification is introduced here that the material properties of the granite rock remain 
stable inside of the particles and are given in a standard way by modules taken for linear 
elasticity: E = 38 × 109 N/m2, ρ  = 7833 kg/m3, ν  0.17, lining properties are: E = 14 × 109 

N/m2, ρ  = 2250 kg/m3, ν  = 0.16, friction angle is 350, tensile strength is 1.26   106 N/m2 

and shear strength is 0.37   106 N/m2. It is assumed that the rock will not suffer form 
damage. 
    In Fig. 3 the geometry of the problem is seen together with the regular particles set up for 
the computation. Total amount of particles in our problem is 3800, from that 1400 in the 
rock, 300 in the lining and 2100 in the air. Internal diameter of each particle is 0.25 m. The 
time step is introduced by the value of 0.1 msec. This can be considered as sufficient 
approximation. 
 

 

Figure 3:  Geometry of the tunnel and grains set up. 
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Figure 4:  Movements 7 msec after the initiation of the explosion. 

 

Figure 5:  After 8 msec the shock wave reached the lining at the calotte. 

 

Figure 6:  Situation after 10 msec. 
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     The movement in the air after 7 msec is seen in Fig. 4, together with its vectors. 
     After 8 msec the shock wave attains the upper lining of the tunnel and causes small 
deflection of the concrete. This is shown in Fig. 5. In Fig. 6, after 10 msec the shock wave 
propagates in the horizontal direction and lefts behind concentration of air pressure at 
approximately ¾ of the height of tunnel, attenuation above this concentration and spalling 
of concrete due to vertical deflection. 



4  CONCLUSION 
In this paper a very topical problem is proposed. The effect of explosion in a closed space – 
tunnel – is formulated and solved. The hexagon method (discontinuous boundary element 
method) is proposed as a numerical tool and developed for time dependent D’Alembert 
principle involved to the formulation of the numerical procedure. The approximation of 
equations of conservation in the air is proposed finite volumes, which seem to be one of the 
best decisions. It appears that in such an application of the methods envisaged is very 
powerful and efficient as the computer time consumed for computation is relatively small. 
     The concrete lining is treated as linear elastic inside of the elements and obeys Mohr-
Coulomb damage rules along the particle interfaces, while the functions in the air are linear, 
without any upheaval. The great advantage of the free hexagons is the acceptance of 
unpredictability of local damage occurrence. Although short time steps seem to be required, 
the results of the example presented in the frame of this paper are reasonable for time step 
equal 0.1 msec. This relatively rough discretization of time interval does not harm seriously 
the results obtained by this procedure, as shorter time interval does not show greater 
variations in the solution.  
     In this study the bearing system (side walls, ceiling of the tunnel lining) was constructed 
from concrete of specific material properties. After the shock wave starts interacting with 
the linear elastic lining, the material exhibits breakage by damage law. As the tunnel has 
rectangular cross-section, both tensile and shear spalling can occur. Rapid attenuation 
below the lining at the calotte appears and concentrated pressure is registered inside of the 
tunnel. If the front of the shock wave propagates in the horizontal direction, the front wave 
in the vertical direction changes and is hurled against the upper lining again. In this 
problem a great interaction of distinctive shock waves is not supposed because of the nature 
of the tunnel geometry in 2D. Although the numerical solution in the air and in the solid 
body is relatively fast, the procedures in both domains is quadratic more exacting. If the 
solution in the air consumes time n  and in the solid bodies m  then the resulting time is 
less than mn , because of faster solution in the air (caused by finite volumes). The 
problem of correct definition of the contact conditions between the air and the solid body, 
such as accurate definition of refractions, part absorption of the kinetic energy, and such 
phenomena, can the consumed time basically increase.    
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