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Abstract 

The effect of the loading-rate on the dynamic response of reinforced concrete 
members under impact loading is investigated numerically through the use of 
three-dimensional dynamic nonlinear finite element analysis. The package 
employed is capable of realistically accounting for the triaxiality and the brittle 
nature characterising concrete material behaviour as well as the characteristics of 
the problem at hand, a wave propagation problem within a highly nonlinear 
medium. Due to the availability of tests data, the present study focusses on 
investigating the effect of impact loading on the behaviour of reinforced concrete 
beam specimens. The numerical predictions obtained provide detailed insight into 
the mechanisms underlying RC structural response and offer a quantitative 
description of the effect of loading-rate on certain important aspects of the 
exhibited behaviour. Based on the numerical predictions obtained, a physical 
model is proposed which is capable of realistically describing the behaviour of the 
RC structural elements under high rates of concentrated loading. The proposed 
physical model links the observed shift in structural response to the localised 
experimentally established and/or numerically predicted behaviour with 
increasing rates of applied loading. Its formulation is based on the use of the 
Compressive Force Path method which is capable of realistically describing the 
behaviour of a wide range of reinforced concrete structural configurations at their 
ultimate limit state under both static and seismic loading conditions. 
Keywords: reinforced concrete, impact, loading rate, compressive force path 
method, finite elements, nonlinear dynamic analysis. 

1 Introduction 

Impact loads are applied locally during the collision of an object onto a certain 
area of a structure. Their form (intensity, distribution, duration, loading-rate, time-
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history) depends on the mass, velocity and shape of the impacting object, the 
dynamic characteristics of the structural element considered (mass, stiffness) and 
the properties of the contact area. Available numerical and test data [1–6] reveal 
that with increasing loading rates RC structural response (observed through the 
deflection and cracking profiles exhibited) becomes more localised, since 
the portion of the RC element reacting to the external load reduces in length 
(concentrating around the impact region) (Fig. 1) as failure occurs prior to the 
generated waves reaching the supports [5, 6]. This phenomenon, combined with 
the inertia forces developing along the element span in the transverse direction, 
underlie the mechanisms governing RC structural response [5–7]. 

  

Figure 1: (a) Load-deflection curves [2] accompanied by (b) deformation 
profiles exhibited by RC beams under static and impact loading [5]. 

     The experimental and numerical methods available for studying in detail RC 
structural response under impact loading are characterised by a certain degree of 
complexity and the predictions obtained by a certain level of uncertainty. In an 
attempt to predict RC structural response under impact in a practical way Single 
Degree of Freedom (SDOF) models have been developed [7, 8] which rely on 
available physical models, such as the truss analogy (TA), to describe the 
mechanism underlying the RC structural response approaching the ultimate limit 
state (ULS). The latter simplified method bypasses the complexities associated 
with the available experimental and numerical assessment methods, however, it 
fails to accurately account for the nature of the problem at hand (a wave 
propagation problem within a highly nonlinear material), the true mechanisms 
underlying RC structural response as well as the triaxiality and the brittleness 
characterizing concrete material behavior [10, 11]. In an attempt to address this 
problem, a model is proposed herein which is based on the concepts underlying 
the ‘Compressive Force Path’ (CFP) method [10] in combination with a simplified 
assessment method which links the shift in structural behaviour observed under 
increasing loading rates with the shortening of the span of the RC beam reacting 
to the applied load [5–7]. This localized response can justify the observed increase 
in maximum sustained load and stiffness (see Fig. 1). The validation of the 
proposed model is achieved by comparing its predictions with its counterparts 
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established experimentally, via drop-weight testing, and numerically, through the 
use of nonlinear finite element analysis (NLFEA). 

2 Limitations of available assessment methods  

Experimental methods: A large number of drop-weight tests [1–4] have been 
carried out to date mainly on individual RC elements (beams, columns, slabs). 
Such tests are difficult to conduct as the intensity of the loads generated increases 
rapidly (in a few msec) from zero to a maximum value often leading to explosive 
brittle forms of failure which can in turn damage the instruments employed for 
measuring structural response. Data obtained from such tests is characterised by 
considerable scatter partly due to a wide range of parameters (associated with the 
experimental setup and the specimen) which differ from test to test [5–7]. This 
scatter predominantly reflects the difficulty in correlating the measured response 
to the actual physical state of the specimens; in fact, the measured maximum value 
of imposed load frequently corresponds to a specimen physical-state characterised 
by high concrete disintegration as well as low residual load-bearing capacity and 
stiffness [5, 7]. This stage of structural response has little practical significance as 
it depends heavily on post-failure mechanisms for transferring the applied loads to 
the specimen supports. In view of the above, the available test data cannot provide 
detailed insight into the mechanisms underlying RC structural response. 

Detailed NLFEA: NLFEA is used as a safer and more efficient method for 
investigating a wider range of RC structural forms. It is capable of providing more 
detailed insight on the mechanisms underlying RC structural response under high-
rate loading compared to drop-weight testing. However, as it usually employs 
dense 3D finite element meshes, combined with complex constitutive material 
laws implemented through the use of iterative solution strategies, the required 
computational resources are high. As a result, its use is generally limited to the 
analysis of relatively simple structural forms. Moreover, its ability for providing 
realistic predictions of RC structural behaviour is, in most cases, linked with the 
use of case-study dependent constitutive models often incorporating empirical 
amplification factors to account for the effect of strain-rate sensitivity on concrete 
material behaviour [11]. 

Methods employed in practice: To avoid the complications and uncertainties 
associated with the previous assessment methods (mainly employed in research) 
and in order to simplify the analysis and design procedures, many (mainly 
military) design codes [9] employ equivalent simple lumped mass-spring systems 
for modelling individual structural elements with distributed mass and loading [8, 
9]. The equivalence is based upon energy approximations that rely on an assumed 
deflected shape (the first eigenvector or the deflected shape under equivalent static 
loading). The latter methodology relies on a number of simplifications/ 
assumptions concerning both material behaviour and structural response. These 
include the use of simple uniaxial material laws, the description of post-failure 
behaviour, empirical amplification factors attributed to the strain-rate sensitivity 
of concrete behaviour, assumptions concerning the deformed shape of the 
structural elements and the use of elastic or elasto-plastic laws for describing 
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structural behaviour. However, such simplifications do not allow the methodology 
to account for the brittle nature of concrete and its sensitivity to triaxial stress 
conditions, the true mechanics governing RC structural response as well as the 
localised response often exhibited.  

3 Physical models describing RC behaviour at ULS 

Unlike the TA method, which forms the basis of current design codes for RC 
structures (EC2, ACI), the CFP method [10] assumes that an RC structural element 
at its ULS behaves essentially as an arch-like structure (for the case of a simple 
supported beam) or a system of arch-like structures connected at the point of 
contraflexure (in the case of more intricate structural configurations characterised 
by static indeterminacy). The latter type of behaviour is enforced by the available 
reinforcement. The CFP method [10] accounts for the brittle nature and triaxiality 
characterising concrete material behaviour. It assumes that the area of the 
compressive zone has a significant effect on shear capacity while the contribution 
of aggregate interlock and dowel action is ignored. Finally, it is considered that 
under cyclic loading the inclined struts of the TA cannot form due to the densely 
spaced inclined intersecting cracks on the web of the RC element. The latter 
assumptions lead to a fundamentally different physical model for describing RC 
structural behaviour at the ULS. Failure is considered to occur due to the 
development of transverse tensile stresses at specific locations along the path 
followed by the compressive force. These locations are dependent on the value of 
the shear span-to-depth ratio (av/d). The manner in which av/d affects the load-
carrying capacity (expressed as Mu/Mf; Mu and Mf are the of bending moments 
associated with failure and flexural capacity respectively) is indicated in Fig. 2 
[10] in which four distinct types of structural behaviour are identified. 
     Type I behaviour is characterized by a flexural mode of failure preceded by 
longitudinal splitting of the concrete in the compressive zone of the beam. This 
occurs when concrete strength in the compressive zone is exhausted due to the 
development of transverse tensile stresses induced by volume dilation of concrete 
in the adjacent regions which include primary flexural cracks. This allows the 
maximum stresses developing within the compressive zone of the beam to attain 
values approximately equal to 1.5 times the uniaxial compressive strength of 
concrete fc [10]. 
     Type II behavior is characterised by a brittle mode of failure usually caused by 
tensile stresses developing either in the region of change of the CFP direction 
(location 1 in Fig. 3(a)) or in the region of the cross-section where the maximum 
bending moment combines with the shear force (location 2 in Fig. 3(a)). The 
transverse stress resultant at location 1 is considered numerically equal to the 
acting shear force, and, its effect is considered to spread over a distance d, on either 
side of location 1. The value of the tensile force that can be sustained at this 
location is determined by eq. (1) [10]. 

ூܶூ,ଵ ൌ 0.5 ∙ ܾ ∙ ݀ ∙ ௧݂                                         (1) 

b and d are the width and effective depth of the beam cross-section whereas ft is 
the tensile strength of concrete.  
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Figure 2: Effect of av/d on the load-carrying capacity (Mu/Mf) of RC beams [10]. 
 

 

 

Figure 3: Internal actions acting: (a) on a RC beam exhibiting type II behaviour 
and (b) on a concrete tooth before and after loss of bond [9]. 

     If the developing shear force is higher than the value provided by eq. (1), 
stirrups are uniformly placed over a length d on both sides of location 1 in a 
quantity sufficient to sustain the whole value (Vf) of the shear force corresponding 
to flexural capacity. The amount of stirrups required is provided by eq. (2) and 
their spacing (s) should not exceed 0.5d. 

௙ܸ ൌ ௦௪,ூூଵܣ ௬݂௪ሺ2d/s൅1ሻ                                (2) 
 

where Asw,II1 is one stirrup’s cross section. 
     Further to location 1, transverse tensile stresses within the compressive zone 
may also develop at location 2 (Fig. 3(a)) due to the loss of bond between the 
longitudinal reinforcement and the surrounding concrete. Fig. 3(b) indicates a 
portion of the beam between two cross-sections defined by consecutive cracks 
(concrete tooth), with the internal forces which develop at these cross-sections 
before and after the loss of bond. Based on the equations of equilibrium, the 
bending moment and shear forces are given by eqs (3) and (4) respectively.  

MൌFs∙z	 (3) 

VൌdM/dxൌdFs/dx∙z൅Fs∙ሺdz/dxሻ (4)
Loss of bond can lead to an extension of the right-hand crack and, hence, to a 
reduction of the depth of the compressive zone (see Fig. 3(b)). 

௖ܨ ∙ ሺݔ௟ െ ௥ሻ/2ݔ ൌ ܸ ∙     ௟/2                             (5)ݔ

Location 2 

Type	I ܽ௩/݀ ൐ ~5	
Type	II 2.5 ൏ ܽ௩ ݀⁄ ൏ ~5	
Type	III 1 ൏ ܽ௩ ݀⁄ ൏ 2.5	
Type	IV ܽ௩ ݀⁄ ൏ 1	

 

Location 1 

(a)

(b)

av/d

Tooth 
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This reduction leads to an increase of the intensity of the compressive stress field 
thus leading to dilation of the volume of concrete in the compressive zone, which 
in turn causes the development of transverse tensile stresses (σt, see Fig. 3(b)) in 
the adjacent regions eq. (6). 

|௧ߪ| ൌ ௖݂ ሾ5ሺ ௬݂௞ܣ௦ ܸ⁄ െ 1ሻሿ⁄                             (6) 

By considering these transverse tensile stresses and the ensuing complex triaxial 
stress state it is possible to express the shear force (VII,2) that can be sustained at 
locations 2 form eq. (7) [10]. 

ூܸூ,ଶ ൌ ௖ܨ ∙ ሾ1 െ 1/ሺ1 ൅ 5 ∙ ௧݂/ ௖݂ሻሿ	 	 																						(7) 

If the developing shear force is higher than the value provided by eq. (6), stirrups 
are needed. To calculate the amount of stirrups required it is necessary to calculate 
the vertical and the horizontal stress resultants in the region between (i) the area 
where the inclined and the horizontal portion of the compressive path meet 
(region 1, Fig. 4(a)) and (ii) the point at which the load is applied. 

ூܶூ,ଶ௩ ൌ ௩ߙ௧ܾሺߪ െ 2݀ሻ 2⁄  (8) 

ூܶூ,ଶ௛ ൌ ௩ߙሺݔ௧ߪ െ 2݀ሻ 2⁄  (9) 

Based on Eqs (8) and (9), the amount of stirrups required is obtained from Eqs (10) 
and (11): 

௦௪,ூூଶ௩ܣ ൌ ூܶூ,ଶ௩ ௬݂௪⁄  (10) 
௦௪,ூூଶ௛ܣ ൌ ூܶூ,ଶ௛ ௬݂௪⁄ (11) 

     Type III behavior, for which location 1 coincides with location 2 (i.e. the 
compressive zone into the shear span degenerates into a cross section within the 
shear span) is characterised by a brittle mode of failure caused by the deep 
penetration of the inclined crack into the compressive zone of the beam. This crack 
reduces the strength of the uncracked concrete in the compressive zone on the 
region where the inclined and the horizontal compressive path of the model meet 
(region 1, Fig. 3(a)), which causes a reduction on the flexural capacity of the beam. 
Based on the internal actions presented in Fig. 4(a), a measure of the maximum 
shear force that concrete alone can carry on this region is provided by eq. (12). 

ூܸூூ ൌ  ூூூ/ܽ௩                                      (12)ܯ

where: ܯூூூ ൌ ூூܯ	
ሺଶ.ହௗሻ ൅

ሺெ೑ିெ಺಺
ሺమ.ఱ೏ሻሻሺଶ.ହௗି௔ೡሻ

ሺଵ.ହௗሻ
					and				ܫܫܯ

ሺ2.5݀ሻ ൌ  1,ܫܫ2.5ܸ݀

The stirrups required are provided by eq. (13) and are distributed within the shear 
span with a spacing s smaller than 0.5d: 

௦௪,ூூூܣ ൌ 2ሺܯ௙ െܯூூூሻ ሺܽ௩ ௬݂௪ሻ⁄                         (13) 
     Type IV behavior can be characterised by two modes of failure linked with 
either failure of the horizontal element of the CFP model or failure of the 
uncracked end portion of the beam (inclined leg of the ‘frame’ of the CFP model) 
in compression. From the moment equilibrium of the free body in Fig. 4(b), the 
flexural capacity (Mf) can be easily calculated and consequently the associated 
load-carrying capacity (Pf) can be determined from eq. (14). 

௙ܲ ൌ  ௙/ܽ௩                                     (14)ܯ
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Figure 4: Internal actions developing in a RC beam exhibiting (a) type III and 
(b) type IV behaviour. 

     On the other hand, the load-carrying capacity (PD) corresponding to the 
strength of the inclined leg of the ‘frame’ will be equal to the vertical component 
of the load (FD) that can be carried by this leg. As indicated in Fig. 4(b), FD is 
easily calculated by taking the depth of the leg equal to av/3 as recommended in 
[9]. 

஽ܲ	ൌ	ܨ஽	z/	ሺz൅αvሻl/2 where ܨ஽	ൌ	ሺαv/3ሻ	b	fc                          (15) 

Therefore, the load-carrying capacity of a beam in the case of type IV behavior 
will be: 	

Pu	ൌ	minሺ ிܲ,	 ஽ܲሻ                                            (16) 

4 Effect of loading rate on the behaviour of RC beams 

A schematic representation of the inertia forces resisting the action of an impact 
load exerted at the mid span section of a simple supported RC beam is shown in 
Fig. 5(a), together with the corresponding shear force (Fig. 5(b)) and bending 
moment (Fig. 5(c)) diagrams which helped to identify the portion of the RC 
beam’s span (Leff) which essentially reacts to the imposed impact load (Fig. 5(d)) 
[7]. This portion is assumed to be fully or partially fixed at its ends and can be 
used to form an equivalent static problem. Figure 5(e) shows the proposed physical 
model describing the mechanics underlying the response of the RC beam under 
increasing rates of loading on the basis of the equivalent static problem (Fig. 5(d)).  
     Leff is essentially the distance covered by the stress waves generated during 
impact within the time period Δtc within which cracks form at the upper face of 
the end sections of Leff (see Fig. 7(b)) [5–7]; hence, 

Leff = 2· υw· Δtc                            (17) 

with υw=√ (G/ρ) being an estimate of the velocity at which the stress wave travels 
within the concrete medium, where G=E/(2+2v) is the shear modulus, E the 
modulus of elasticity, ν the Poisson’s ratio and ρ the density of concrete. 
     If P is the loading rate and considering the beam portion Leff  in Fig. 5(d), then 
the value of the imposed load at which cracking forms at the upper face of the Leff  

ends is Pd,cr= P ·Δtc=8Mcr/(αLeff). Replacing in the latter equation Leff as expressed 
in eq. (17) and solving in respect to Δtc results: 

Δtc = [4Mcr/(αP  υw)]0.5                     (18) 
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Substituting the value of Δtc obtained from eq. (18) into eq. (17) provides the value 
of Leff. Considering different degrees of fixity being achieved at the ends of the 
Leff, the bending moment at these locations at ULS can be considered equal to: 
(i) the flexural capacity ܯிమ(fully fixed support) or (ii) the bending 
moment		ܯ஼ோమ	at which cracking initiates at the upper face of the Leff  ends (see 
Fig. 6(b)). Based on the above assumptions the beam load-carrying capacity will 
be 

PF = 2 VF                                                     (19) 

where  VF = (2/a)(MF1 + MF2)/Leff  (20a)    or    VF = (2/a)(MF1 + MCR2)/Leff   (20b) 

with VF being the resultant of the up-thrust forces (i.e. the resultant of the inertial 
forces FI and the reactions R, see Fig. 5) acting on Leff and a a parameter defining 
the distance of VF from PF as a percentage of Leff/2 which may be assessed on the 
basis of the available experimental and numerical data as discussed in section 9.  
     Equations (17) to (20) may form the basis of a simple method for assessing the 
beam load-carrying capacity under impact loading. 
 

 

Figure 5: RC beam under impact loading: Schematic representations of 
(a) imposed loading, (b) shear force diagram, (c) bending moment 
diagram, (d) the equivalent static problem based on Leff and (e) the 
proposed physical model describing the behaviour of the RC beam 
under increasing loading rates. 

5 General aspects of the NLFEA model employed 

ADINA shares a number of characteristics with RCFINEL [11] which has been 
found capable of providing realistic predictions concerning the response of a wide 
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range of RC structural configurations under static and dynamic loading. During 
each time step, the equation of motion is solved as a sequence of equivalent static 
problems through the use of the Newmark family of approximation methods. An 
iterative procedure based on the modified Newton–Raphson method is used for 
solving the equivalent static problem considered at each time increment. During 
each iteration, every Gauss point is checked to determine whether loading or 
unloading takes place and to establish whether any cracks close or form. 
Appropriate changes are then introduced to the stiffness matrix. Convergence is 
checked at each Gauss point; this involves the use of the constitutive relations for 
the calculation of the stresses and the corresponding strain increments. Once the 
values of the residual forces become smaller than a predefined value convergence 
is accomplished otherwise the residual forces are re-imposed onto the FE model 
until convergence is finally achieved. 
     The concrete material model employed by ADINA stems from experimental 
data obtained from tests conducted on concrete cylinders under triaxial loading 
conditions [11]. It is fully defined by a single material parameter  the uniaxial 
cylinder compressive strength fc, and accounts for the brittle nature and triaxiality 
characterising concrete material behaviour. A simple bilinear elasto-plastic 
hardening model is employed for describing the behaviour of steel. Concrete and 
steel material behaviour is assumed to be independent of the loading-rate and full 
bond is considered between steel and concrete.The smeared-crack approach is 
adopted for modelling cracking. The development of a crack is followed by 
immediate loss of load-carrying capacity in the direction normal to the plane of 
the crack. At the same time, the shear stiffness is also reduced drastically to about 
10% of its value before the occurrence of the crack. Each integration point can 
develop up to three cracks. 

6 Structural form investigated 

The behaviour of the RC beam specimens considered herein have been 
experimentally investigated in the past [1] under static and drop-weight testing. 
The design details of specimens C2 and D1 considered in the present work are 
presented in Fig. 6(a).The modulus of elasticity, yield stress and ultimate strength 
of all types of steel reinforcement are ES = 206 GPa, fy = 460 MPa and fu = 560 
MPa, respectively. The uniaxial compressive strength (fc) of concrete is 45 MPa.  

7 FE modelling of the problem at hand 

Concrete is modelled using a mesh of 27-noded brick elements (which adopt a 
3x3x3 integration rule) with an edge size of approximately 40 mm. The steel 
reinforcement bars are modelled as 2-node truss elements of appropriate cross-
sectional area. Due to the double symmetry of the problem at hand, only a quarter 
of the RC beam is modelled with suitable boundary conditions, see Fig. 5(b). The 
load is applied onto the mid-span of the beam through a steel plate. For the case 
of static loading the load is applied monotonically until failure in the form of 
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displacement increments (displacement control). In the dynamic case studies the 
load is imposed with at a constant rate in the form of load increments. 

 

 
 
 
 

Beam type Length Tensile Steel 
௦ܣ

Compression 
Steel ܣ௦ᇱ 

Stirrups 

C2 3m 2x12D 2x6D 14x6D 
D1 3m 2x16D 2x6D 14x6D 

 

Figure 6: RC beams investigated: (a) Design details; (b) FE model employed. 

8 Numerical predictions 

Static case study: Under static loading, the predictions obtained concerning certain 
aspects of the behaviour exhibited by specimens C2 and D1 are presented in Fig. 7. 
The predictions in Fig. 7(a) are presented in the form of curves describing the 
relation between the applied load and the deflection at mid-span. The latter curves 
are in good agreement with their experimentally established counterparts [1]. 
Both, measured and predicted response show that all beams exhibited ductile 
behaviour, with failure occurring after yielding of the longitudinal reinforcement 
bars at mid-span, resulting in the formation of extensive cracking that led to loss 
of load-carrying capacity of the compressive zone. Fig. 7(b) shows the 
deformation and cracking profiles of specimen C2 at different stages of the loading 
process. Overall, the numerically predicted response of the RC beams is in 
agreement to that established experimentally.  

High rate loading case studies: The values of the applied loading rates considered 
in the numerical study range from 1 to 103 kN/ms. From the predicted load-
deformation curves presented in Fig. 8(a), it appears that an increase in the loading 
rate leads to an increase in stiffness and load-carrying capacity combined with a 
decrease of the maximum deflection at mid span. As regards the cracking and 
deformation profiles, Fig. 8(b) indicates that, under relatively low rates of impact 
loading, beam behaviour is qualitatively similar to that exhibited under static 
loading. However, as the rate of loading increases, the portion (Leff) of the beam 
mostly affected by the applied load reduces; for relatively high rates of loading, it 
is confined in the region of the beam mid-span extending on either side of the mid-
span cross section to a distance marked by the formation of vertical (flexural) 
cracking initiating at the upper face and extending downwards, whereas the 
remainder of the beam, i.e. the portions extending between the supports and the 
aforementioned cracking, practically remain unaffected by the applied load. 

(b) 

(a) 
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Therefore, under high rates of loading, beam behaviour is essentially controlled 
by Leff.  The variation of the dynamic increase factor (DIF), i.e., the increase in the 
maximum load sustained by the RC beams under high rate loading normalised 
with respect to its counterpart under static loading, with the applied loading rate is 
presented in Fig. 9 which shows a good correlation between the values predicted 
numerically and their experimental counterparts.  

 

 

 

 

Figure 7: Beam C2 under static loading: (a) Experimentally established and 
numerically predicted load-deflection curves; (b) Numerically 
predicted deformation and cracking profiles at various load levels. 

 

 

 

 

 

Figure 8: Beam C2 under loading applied at various rates: (a) Load-deflection 
curves; (b) Deformation and cracking profiles. 

 

Figure 9: Variation of DIF with increasing loading rate: (a) beam C2 and 
(b) beam D1. 
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9 Calibration of the proposed method  

Substituting a ≈ 1 into eqs (17)–(20) in Section 4 the predictions obtained by the 
simplified method appear to be in good agreement with both the experimental and 
numerical data up to a certain value of loading rate (106kN/msec, see Fig. 9). 
Beyond this limit of loading rate structural response becomes too localised and as 
a result the simplified methodology proposed is no longer applicable. However, 
for loading rates up to 106 kN/msec the proposed method appears capable of 
explaining how the reduction of the element span (Leff) reacting to the imposed 
load can affect the mechanics underlying RC structural response when 
approaching ULS. The experimentally and numerically observed shift in structural 
response with increasing loading rates is essentially attributed to the change of the 
behaviour type exhibited by the span (Leff) reacting to the imposed load which 
gradually shifts form Type I to IV. The formulation of the present method is 
currently further refined by considering a wider range of tests data obtained from 
drop weight tests as well as additional predictions obtained from parametric 
studies conducted through the use of NLFEA. 

10 Concluding remarks  

The numerical predictions of the simplified assessment method are in good 
agreement with their counterparts obtained experimentally (via drop weight 
testing) and numerically (via dynamic nonlinear finite element analysis). The 
proposed physical model (which forms the basis of the simplified method) is 
capable of describing the response of RC beams when approaching the ULS under 
high rate loading. The proposed method is currently being refined and forms the 
basis for the development of a new SDOF model which will be capable of 
providing realistic predictions concerning the behaviour of individual RC 
structural elements under impact loading. 
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