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Abstract 

The aim of this paper is to present a numerical scheme for the identification of 
the nonlinear characteristics of a dynamically excited, single degree of freedom 
structure, using a non-parametric procedure, recently proposed by the second 
author; this involves the simultaneous identification of the nonlinear 
characteristics of both damping and restoring force in dynamic systems whose 
damping depends on velocity alone. According to this method, the response of 
the structure is first measured then an integral equation accounting for its 
unknown nonlinear characteristics is derived. This is an integral equation of the 
first kind, involving numerical instability in the Hadamard sense. To overcome 
this difficulty, the Landweber regularization, combined with the L-curve 
criterion, is applied to the integral equation. Adopting a dynamic model for a test 
structure, the corresponding nonlinear system identification is achieved through 
the proposed numerical solution of the governing integral equation. 
Keywords: non-parametric system identification, nonlinear damping, nonlinear 
stiffness, dynamic response data, single-degree-of-freedom. 
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1 Introduction 

In the last two decades, there has been a lot of research work on the subject of 
dynamic system identification conducted by Masri et al. [1], Chassiakos and 
Masri [2], Liang et al. [3, 4], Spina et al. [5], Iourtchenko and Dimentberg [6], 
and others [7–17]. However, most of this research has identified the nonlinear 
characteristics of either damping or the restoring force. Only in a few recent 
studies, there has been an attempt to identify the nonlinear characteristics of both 
[18, 19]. 
     In this paper, the nonlinear characteristics of both damping and restoring 
force of a single degree of freedom system are determined. For this purpose, a 
non-parametric procedure according to Jang’s method [20] is applied; this 
involves a non-parametric, simultaneous identification of the nonlinear 
characteristics of both damping and restoring force for systems whose damping 
depends on velocity alone. The nonlinear damping and restoring force 
parameters of a system with time dependent damping are numerically obtained. 
A sinusoidal (with respect to velocity) damping as well as a sinusoidal nonlinear 
restoring force model is adopted for such a system. 

2 Motion responses 

A nonlinear single degree of freedom system is here considered; its damping is 
assumed to depend on velocity alone. Although a physical experiment should be 
conducted to provide measurements of the system response for the system 
identification process, virtual measurements of the velocity and the displacement 
are here numerically obtained using the Runge-Kutta method. 
     The system is governed by the nonlinear ordinary differential equation  
 ( ) ( )my ky f y r y     (1) 

with the following initial conditions [20], 
 (0) ,    (0)y y   , (2) 

where the constants m and k denote the mass of a particle of the oscillator and a 
spring coefficient, respectively. The velocity dependent nonlinear damping 
 f y  and the nonlinear restoring force r(y) are assumed anti-symmetric: 

 ( ) ( )f y f y    , (3) 

 ( ) ( )r y r y   . (4) 

The term  f y  in eqn (1) indicates a general form of velocity-dependent 

nonlinear damping for conventional dampers; this is the usual damping 
modelling of nonlinear systems that is adopted in natural sciences. In the 
engineering field, when ships or other floating bodies are subjected to large roll 
motions in waves, either when sailing or when at anchor, they experience 
nonlinear roll damping, which can be characterized as a type of velocity-
dependent damping of the form  f y  in eqn (1). This phenomenon is usually 

caused physically by the effects of nonlinear free-surface wave making and the 
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nonlinear viscous dissipation of fluid flow. In contrast to this type of damping, 
the nonlinear damping characterized by ( )f y y  in the Liénard equation appeared 

in the early research investigation carried out by Jang et al. [18]; simultaneous 
nonlinear identification was carried out there for the Van der Pol nonlinear 
equation. The other term that appears in eqn (1), namely r(y), represents a 
general form of the nonlinear restoring force of the oscillator. 
     In this paper, the mixed linear-cubic (with respect to y ) damping model is 

applied and the linear-cubic nonlinear restoring force model as follows: 
  ( ) sinf y a y   and  ( ) sinr y c y , (5) 

where the adopted values for the coefficients are a = –3.385 and c = –20.3 
(table 1). The assumed initial conditions in eqn (2) are 
  0 1.0y  ,  0 0y  . (6) 

Table 1:  Principal properties of the numerical experiment. 

Principal properties [25] 

Governing equation    sin sinmy ky a y c y     

Mass (kg) m 6.407 

Linear restoring coefficient (N/m) k 20 

Nonlinear damping coefficient (Ns/m) a –3.385 

Nonlinear restoring coefficient (N/m) c –20.3 

  
     For the numerical calculation of the system response, the Runge-Kutta 
method is used for the solution of eqn (1) and the trapezoidal rule is applied for 
the numerical integration; the time domain is taken as 0  t  20 s and the total 
number of time intervals is 401 or t = 0.05 s. 
     Fig. 1 shows the displacement and velocity obtained by solving eqn (1) for 
the damping and restoring force as well as the initial conditions given by 
eqns. (5) and (6), respectively; fig. 2 depicts the phase diagram corresponding to 
the solution of fig. 1. 
     Now, the original nonlinear differential equation (1) is transformed to an 
equivalent nonlinear Volterra integral equation as follows: 

 1 2 1 2
1 2 0

( ) ( ) ( ) ( )
( ) ( ) ( ) [ ( ) ( )]d

( )

t y y t y t y
y t y t y t f y r y

mW

   
  


     , (7) 

in which y1 and y2 are chosen so that they satisfy 

 1 1 1 1

2 2 2 2

0, (0) , (0) 0,

0, (0) 0, (0) ,

my ky y y

my ky y y




   
   

 
 

 (8) 

and 
 1 2 1 2( ) ( ) ( ) ( ) ( )W y y y y        

The values of  
 
and  are assumed to have the following magnitude in this paper 

[7, 18, 20]:  =  = 1. 
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Figure 1: System responses obtained by solving eqns (1), (5) and (6). 

 

 

Figure 2: System phase diagram associated with the solution of fig. 1 

 
     It is then possible to construct an integral equation for u, given by 
 ( ) ( )u f y r y  , (9) 

using eqn (7): 

 1 2 0
( ) ( ) ( ) ( , ) ( )d

t
y t y t y t K t u        . (10) 

with the kernel K defined as  

 1 2 1 2( ) ( ) ( ) ( )
( , )

( )

y y t y t y
K t

mW

 





 . (11) 
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     The relationship in eqn (10) is classified as a Volterra-type integral equation 
of the first kind [20], which defines an inverse problem for the simultaneous 
identification of the velocity-dependent nonlinear damping and restoring force 
together with the nonlinear function defined by eqn (9). Eqn (10) and eqn (9) 
constitute the required equations of the present nonlinear inverse problem for the 
two unknown functions, f and r. 

3 Calculating u by regularization 

In the previous section, the analysis was based on the assumption that u in eqn 
(9) is known. As far as the determination of u is concerned, an integral equation 
of the first kind, such as eqn (10), must be dealt with. Thus, the question of 
whether the solution to system identification depends on the measured response 
data in a continuous manner remains. This question can be answered by the 
theory of integral equations, according to which, if integral equations with a 
regular kernel such as the K given by eqn (11) are of the first kind, then their 
solutions lack stability properties [21 23]. Unreliable solutions may result from a 
small amount of noisy data due to the considerable amplification of a small noisy 
error. 
     To overcome the difficulty of the solution’s instability with regard to f and r, 
the Landweber regularization  

  * *
1 1( ) ( ),  1, 2...j j ju u L L u L j      . (12) 

is applied to prevent it from affecting the performance of the identification [18, 
20, 23]. In eqn (12), L is the operator,  

 
0

( ) ( , ) ( )
t

L z K t z d    , (13) 

L* denotes the adjoint operator of L,  is a positive constant and  is given by 
 1 2y y y      (14) 

In the theory of iterative regularization, an appropriate number of iterations j is 
important for an accurate solution. Here, the L-curve criterion is applied to find 
an appropriate number of iterations. [18, 20, 22, 24]. 

4 Simultaneous identification  

This section contains an illustration of the way by which the two unknowns, that 
is, the velocity-dependent nonlinear damping ( )f y  and nonlinear restoring force 

r(y), can be identified using the formulated eqns (9) and (10). 
     It is initially assumed that the measured response data for y and y

 
of the 

nonlinear oscillation governed by eqn (1) are depicted as shown in fig. 1; a 
number of the intersection points of the curve of y with the t-axis are found at 
times t = t1, t2,…; the ti for i = 1,2,… are zero-crossing times for the 
displacement. In exactly the same way, there are also intersection points of the 
curve of y  with the t-axis at t = t1, t2, …, which are zero-crossing times for the 

velocity; hence, 
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 ( ) 0iy t 
          

for i = 1,2,… 
 
(15) 

 ( ) 0ky t 
        

for k = 1,2,… (16) 

Since eqn (9) remains valid for any positive time, it should also hold not only for 
zero-crossing times (for the displacement) t = t1, t2,…, but also for zero-crossing 
times (for the velocity) t = t1, t2, …. Thus, it follows that 
 ( ) [ ( )] [ ( )]i i iu t f y t r y t  , (17) 

and 
 ( ) [ ( )] [ ( )]k k ku t f y t r y t  . (18) 

     From the information of the measured response data for y and y , the zero-

crossing times of the displacement ti (i = 1,2,…) and the velocity tk (k = 1,2,…) 
and the stabilized u in eqn (10), it follows that the nonlinear damping at times ti 
is 
 ( ) [ ( )]i iu t f y t  ,

 
(19) 

and the nonlinear restoring force at tk is 
 ( ) [ ( )]k ku t r y t . (20) 

Thus, the decoupled eqns (19) and (20) for the two unknowns, f and r, 
respectively, have been reached. 

5 Numerical results 

The principal properties of the numerical experiment are shown in table 1. In this 
virtual experiment, the measurement noise level of the motion response is 
assumed to be  = 0.01. As already mentioned, the Runge-Kutta method is 
applied for the determination of the system response shown in fig. 1. The optimal 
or appropriate iteration number jopt = 4×105 of the Landweber’s regularization 
method, corresponding to the corner of the L-curve, and the respective uj,opt, 
determined by solving eqn (10) with noise  = 0.01 are depicted in fig. 3 and 
fig. 4, respectively. 
 

Figure 3: L-curve for the records of fig 1: optimal iteration number jopt = 4105. 
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Figure 4: Computed uj,opt(t) for the optimal iteration number jopt = 4105. 

 
     Employing the uj,opt and the zero-crossing times for the displacement ti and 
velocity tk (fig. 5), the determined nonlinear damping  f y  and the nonlinear 

restoring force r(y) are demonstrated in fig. 6 and fig. 7, respectively. 

Figure 5: System responses with the zero-crossing times. 

6 Conclusions 

In the present study, Jang’s method is applied for the numerical identification of 
the nonlinear damping and the nonlinear restoring forces in a SDOF dynamic 
structure. The main idea of the Jang’s method relies on zero-crossing time 
measurements from experimental displacement and velocity records and it is a 
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1t 2t 3t 4t 

1t 2t 3t 4t   



very simple but accurate method for the identification of nonlinear 
characteristics. Of course, it has an ill-posedness property which causes solution 
instability; but this can be handled by a regularization method such as the 
Landweber’s method with the L-curve criterion. Finally, the suitability of Jang’s 
method for the determination of the nonlinear characteristics of a SDOF dynamic 
structure has been demonstrated through a numerical experiment. 
 

Figure 6: Numerical results for  f y  compared to the originally assumed 

nonlinear damping    sinf y a y  ; a = –3.385. 

Figure 7: Numerical results for r(y) compared to the originally assumed 
nonlinear restoring force    sinr y c y ; c = –20.3. 
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