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Abstract 

The dynamic response of structures under impulsive loading is a complex 
process where both geometric and material nonlinearities play a very important 
role. The use of Finite Element calculations is advisable for the design of 
structures that must withstand impulsive action (blast or impact), but designers 
very often lack the resources to perform these calculations, thus simplified 
design methods are often used, mainly based on the reduction of the original 
system to dynamically equivalent SDOF system. 
     Most of the existing approaches suffer from shortcomings when having to 
deal with arbitrary support conditions, to consider catenary effects or to consider 
interaction effects with surrounding parts of the structure.    
     In order to overcome these limitations, the Institute of Steel Construction has 
proposed a new 2-DOF dynamically equivalent system reduction, which allows 
for the explicit consideration of catenary action including connector failure and 
opens new possibilities for integration with more complex Finite Element 
models. Within this new approach, the connectors are treated distinctly, so that a 
separate assessment of its failure is possible.  
Keywords: equivalent system, SDOF, system reduction, geometrical 
nonlinearities, dynamically equivalent system, beam reduction, FEM. 

1 Introduction 

Accidental actions such as explosions can load structures up to their ultimate 
resistance levels. Especially the members directly affected by the action undergo 
large plastic deformations, which lead locally to member failure and may affect 
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the overall stability of the structure. An accurate prediction of the dynamic 
response is decisive for a safe and robust design of the structure. 
     Due to the large amount of physical and geometrical nonlinearities, as well as 
the highly time dependent behaviour present in explosive events, the modelling 
and calculation of this processes is subjected to high computational 
requirements. The most exact and reliable method of predicting the structural 
response consists of the use of Finite Element Methods (FEM) with explicit 
solvers. Hereby the calculation of a structure undergoing a given explosive load 
requires considerable modelling expertise as well as very large computational 
power, with calculations taking several days to compute. Normally common 
software packages used for the design of steel structures do not allow for this 
type of modelling and solving strategies, since they involve a solution in the time 
domain under consideration of geometrical, material and contact nonlinearities. 
     On the other hand, simplified design methods offer an affordable, much less 
time-consuming alternative for predicting the effects of blast action, which can 
be used by a wide spectrum of structural engineers, without advanced knowledge 
of the FEM.  
     The analytical and numerical background for the modelling and calculation of 
structures under the effect of explosive loads by means of simplified methods 
was established at the end of the 50s. Motivated by strategic military questions, 
the US Army performed a very extensive program of experimental, numerical 
and analytical investigations on this topic. A series of Technical and Engineering 
Manuals under the title “Design of Structures to Resist the Effects of Atomic 
Weapons”  [1] were published between 1957 and 1961 under the lead of 
scientists from Massachusetts Institute of Technology (MIT) (e.g. Norris et al. 
 [2]). Especially the working group of Biggs  [3] settled the fundamentals for 
dynamic system reduction, that are still used in present design recommendations 
[4–7]. 
     In this paper, a brief overview of these two design methodologies, specially 
focusing on their basic assumptions and limitations, will be given in Section 2. In 
the scope of this work, the focus lies on the development of a new design 
methodology for steel structures where one-way components (beam columns) 
must withstand the explosion. Therefore, the fundamentals of dynamic system 
reduction focusing on beam elements are presented in Section 3. In order to 
overcome some known limitations dealing with the effects of geometrical 
nonlinearities, a new reduction methodology is proposed for including the effects 
of axial forces and/or boundary conditions in an explicit manner. In Section 4 a 
validation example of the new methodology is given. 

2 Design methodologies 

The solution of structures under impact loading can be obtained by two different 
methodologies. These differ very strongly in the amount of modelling detail, 
calculation time and solution type, so that it is very important to analyse the 
strengths and weaknesses of each method in order to use them properly. 
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2.1 Finite Element calculations 

The Finite Element Method offers the most exact and realistic description of the 
problem. By means of beams, shells or volume elements using appropriate 
material models and contact definition, any type of problem can be addressed. 
With increasing level of detail, the amount of system degrees of freedom 
increases strongly. 
     Due to the short duration of the load application, the system is excited in very 
high frequencies. Thus, the use of explicit solvers is strongly recommended for 
this type of calculations.  
     The direct simulation of impulsive loaded structures is very demanding in 
terms of computing time, numeric stability and modelling accuracy. The required 
small time stepping (due to the very short impulse duration) for the dynamic 
calculation leads often to numerical convergence problems as well as to very 
large computing times even for the simulation of few milliseconds of the 
structural response. 
     The advantages of the use of the FEM are: (a) the possibility to include details 
of interest (i.e. bolts) and obtain a direct output of the magnitudes of interest; (b) 
the solution is in the time domain, hence it is possible to follow the development 
of the failure mechanism; (c) advanced material models and exact geometrical 
theories can be considered; (d) interaction effects between different members are 
considered.    
     On the other hand, the use of FEM has some disadvantages: (a) the problem 
setup is quite time consuming and requires advanced expertise; (b) very high 
time requirements for calculation; and (c) parametric studies are generally not 
possible.  
     Especially on early design stages, the use of FEM is not advisable, since the 
structural design and detailing is still to be determined by iterative calculations.   

2.2 Simplified models 

From a designer point of view, the knowledge of the structural response of a 
certain given system is of small interest compared to the ability of predicting the 
behaviour of the same system under variation of different parameters (i.e. 
connector stiffness, mass distribution, chosen cross-section …). This knowledge 
can only be achieved through parametric studies. 
     The performance of parametric studies for this type of phenomena is, even 
with today’s computer power, not feasible for detailed Finite Element systems 
(this means including connectors, beam and shell elements), so that 
simplifications of the system behaviour are assumed in order to allow for this 
type of studies. 
     Through the definition of energetic equivalent systems (also called dynamic 
equivalent systems), the problem complexity can be dramatically reduced, and 
thus the solution time.  
     An energetic equivalent system reduces the investigated structure to a single 
degree of freedom (SDOF) system, which shows the same deformational and 
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energetic behaviour than the original system (see fig. 1). The effects of structural 
damping are neglected here. 
     Once the reduced model is defined, the motion differential equation of an 
undamped nonlinear SDOF 

ாܯ  ሷݔ  ܴாሺݔሻ ൌ ா݂ሺݐሻ  (1) 

with ܯா equivalent mass of the system, 
,ݔ  ሷݔ  displacement and acceleration of the equivalent mass, 
 ܴாሺݔሻ equivalent force-displacement relation, 
 ா݂ሺݐሻ equivalent explosive load, 
can be solved by simple numerical implementation (see [3, 6, 9]).  
  

 

Figure 1: Member reduction to a SDOF with nonlinear force-displacement 
relation. 

     In this model, all structural nonlinearities are considered by a nonlinear 
definition of the force-displacement relation ܴாሺݔሻ	of the equivalent spring. 
While the first approaches from Norris et al.  [2] and Biggs  [3], considered an 
elastic-perfectly plastic model, it was very soon observed, that this approach was 
too conservative, because it neglected the stiffening effect of membrane force 
activation. Different additions to the ܴாሺݔሻ curve have been proposed in modern 
codes [4, 5, 7], being the approach from the Fire and Blast Information Group  [6] 
the most detailed one, proposing a 6-piece curve for ܴாሺݔሻ. 
     For some of these model simplifications, parametric studies have been made 
under consideration of varying loading (Fmax peak pressure and td impulse 
duration) and varying system properties (T natural period, RE,el plastic resistance, 
kE initial stiffness). For a given set of boundary and loading conditions, the 
required ductility μ = xmax / xel can then be evaluated from diagrams (e.g. fig. 2).  
     The main advantages of the use of simplified models for dynamic calculations 
are: (a) its easiness of use and programmability, (b) the adequacy for use in 
parametric studies and (c) the existence of associated diagrams to quickly assess 
the required member ductility. 
     On the other hand, (a) the use of simplified models is limited to the evaluation 
of a single member (no interaction effects between substructure and main 
structure); (b) its use is only valid for a given set of boundary conditions; and 
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(c) the treatment of geometrical nonlinearities in some approaches is non-trivial 
and requires a good theoretical background. 
 

 

Figure 2: Required member ductility in dependence of the normalised 
impulse duration (td/T) and normalized peak load (Rel/Fmax), for an 
elastic-perfectly plastic system, from [7]. 

3 Definition of a new dynamic equivalent system  

Here a new dynamic equivalent system for a generally supported beam element 
will be presented. Differing from classical approaches mentioned in section  2.2, 
the new reduced system consists of a mass with 2 DOF (in vertical and 
horizontal direction) supported by a set of 4 springs as represented in fig. 3: 
 

 
 

Figure 3: Proposed member reduction to a new dynamic equivalent system. 

     This system decomposition separates the effects of the beam nonlinearities in 
two components, i.e. material and geometrical. In this manner, the resistance 
behaviour due to the flexure of the member (including material nonlinearities 
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caused by the yielding of the member or any of the rotational springs KR1 and 
KR2) is considered by the two vertical springs KE1 and KE2.  
     On the other hand, the geometrical (membrane) nonlinear behaviour is 
modelled by the two horizontal geometrical nonlinear springs KH1 and KH2. By 
the use of a nonlinear material definition, they account as well for connector 
failure (or axial yielding of the beam).   
     According to  [1], in the energetic analysis of a dynamically excited structure, 
there are three quantities to be considered: 1) work done or external work, 
2) strain energy or internal energy and 3) kinetic energy. The definition of a 
dynamically equivalent system involves the principle of dynamic similarity, 
which is merely the requirement that the three mentioned energy components 
remain equal with those of the given structure. 
     Assuming a beam element undergoing an arbitrary deformation ϕሺs, tሻ (as in 
fig. 4), the new equivalent system must be defined by requiring that 1) the 
deformation behavior, 2) the kinetic energy stored in the lumped mass ME, 3) 
the strain energy stored in the springs and 4) the external work done by the force 
FE remain equal for both the original and the equivalent system.· 
 

 

Figure 4: Arbitrary deformation. 

3.1 Equivalent mass 

The equivalent mass of a beam undergoing a deformation Φ(s,t)=	w(t)ψ(s) (as in 
fig. 4) is defined as the mass needed in order to absorb the same amount of 
kinetic energy, assuming that the equivalent mass deforms with the same peak 
deformation over time	wሺtሻ. 

௩,ୗܧ ൌ  ௩,                                                          (2)ܧ

with  ܧ௩, ൌ 	
ଵ

ଶ
 ாܯ  ቀ

ௗ௪ሺ௧ሻ

ௗ௧
ቁ
ଶ
 

௩,ୗܧ  ൌ 	
ଵ

ଶ
 ሾ μ  ψሺݏሻଶ  ݏ݀  ∑ሺM୧  ψሺݏ, ሻଶሻሿݐ  ቀ

ௗ௪ሺ௧ሻ

ௗ௧
ቁ
ଶ
 

 with μ cross-sectional mass (per unit length) 
  Mi concentrated masses at points si 
     From Eqn. (2), it can be concluded that: 

ாܯ ൌ μ  ψሺݏሻଶ  ݏ݀  ∑M୧  ψሺݏ,  ሻଶ                          (3)ݐ
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3.2 Equivalent load 

The equivalent load acting on a beam undergoing the same deformation Φሺs,tሻ	is 
defined as the concentrated load acting on the equivalent mass that is needed to 
input the same amount of external work in the system, assuming that the 
equivalent mass deforms with the same peak deformation over time	wሺtሻ. 

ௌܧ∆ ൌ  ா                                                       (4)ܧ∆

with  ∆ܧா ൌ 	
ଵ

ଶ
 ாሺtሻܨ  wሺtሻ 

ௌܧ∆  ൌ 	
ଵ

ଶ
 ൣ qሺs, tሻ  ψሺݏሻ  ݏ݀  ∑൫P୧  ψሺݏ, ሻ൯൧ݐ  wሺtሻ 

 with q(s,t) distributed load (per unit length) 
  Pi concentrated loads at points si 
     From Eqn. (4), it can be concluded that: 

ாሺtሻܨ ൌ ,qሺs tሻ  ψሺݏሻ  ݏ݀  ∑൫P୧  ψሺݏ,  ሻ൯                     (5)ݐ

3.3 Equivalent stiffness for vertical springs KE1 and KE2 

The equivalent stiffness for the vertical springs must absorb the same amount of 
bending strain energy as the original beam undergoing a deformation Φሺs,tሻ. 
This definition is the same as in the classical Biggs’ approach  [3]. The bending 
strain energy equilibrium can be formulated as: 

,ୗܧ ൌ  ,                                                         (6)ܧ

with  ܧ, ൌ 	
ଵ

ଶ
 ݇ா   ଶݓ

,ୗܧ  ൌ ൬ܫܧ  ቀ
ୢమநሺ௦ሻ

ୢୱమ
ቁ
ଶ
 ݀s  ݇ோଵ  ቀ

ௗநሺሻ

ௗ௦
ቁ
ଶ
 ݇ோଶ  ቀ

ௗநሺሻ

ௗ௦
ቁ
ଶ
൰ 

௪మ

ଶ
	

with EI bending stiffness of the beam 
 kR1, kR2 rotational stiffness of springs KR1 and KR2 
 

     From Eqn. (6), it can be concluded that: 

݇ா ൌ ܫܧ  ቀ
ௗమటሺ௦ሻ

ௗ௦మ
ቁ
ଶ
 ݏ݀  ݇ଵ  ቀ

݀టሺሻ
݀௦

ቁ
ଶ
 ݇ଶ  ቀ

݀టሺሻ
݀௦

ቁ
ଶ
               (7) 

The stiffness kE  of the vertical springs in the equivalent model is distributed 
according to the following weighting function: 
 

݇ாଵ ൌ ݇ா 
ହ୩భାଷ୩మା୩భ୩మାଵଶ

ସ୩భାସ୩మା୩భ୩మାଵଶ
   and   ݇ாଶ ൌ ݇ா 

ଷ୩భାହ୩మା୩భ୩మାଵଶ

ସ୩భାସ୩మା୩భ୩మାଵଶ
  (8) 

 
which corresponds to the elastic distribution coefficients for a two-way 
supported beam with rotational stiffness kR1 = k1EI/L and kR2 = k2EI/L. In a 
perfectly plastic developed state kE1 = kE2. 
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3.4 Equivalent stiffness for horizontal springs KH1 and KH2 

The horizontal springs KH1 and KH2 must absorb the same amount of membrane 
strain energy as the original beam undergoing a deformation Φሺs,tሻ. In order to 
correctly evaluate the cumulated membrane (axial) strain energy, an additional 
deformation hypothesis u(x) as in fig. 5 needs to be defined. 

 

Figure 5: Deformation hypothesis in axial direction and equivalent model for 
the absorption of membrane strain energy. 

     In order to calculate the equivalent spring stiffnesses kH1 and kH2 of the 
springs KH1 and KH2, the use of a nonlinear strain definition is needed. 
Assuming: 

ሻݏሺߝ ൌ
ௗ௨ሺ௦ሻ

ௗ௦


ଵ

ଶ
 ቀ

݀ఃሺ௦ሻ

ݏ݀
ቁ
2
                                            (9) 

the membrane strain energy accumulated in the original system from fig. 5 can 
be calculated with eqn. (10). 

ఌ,ௌܧ  ൌ
ಽభ
2
 1ݑ

2 
ಽమ
2
 2ݑ

2 
ܣܧ

2
  ሻ2ݏሺߝ  ݏ݀

ܮ

0
ൌ

ಽభ
2
 1ݑ

2 
ಽమ
2
 3ݑ

2 
ܣܧ

2

ሺ1ݑെ2ݑሻ2

ܮ


															
ܣܧ

8
  ቀ

݀టሺ௦ሻ
݀௦

ቁ
4

 ݏ݀
ܮ

0
 4ݓ െ

ܣܧ

2

2ݑ1െݑ
ܮ

  ቀ
݀టሺ௦ሻ
݀௦

ቁ
2

 ݏ݀
ܮ

0
 2ݓ   (10) 

The values of the horizontal displacements at the supports u1 and u2 can be found 
at the points where eqn. (10) is minimised: 

ଵݑ ൌ
ଵ

2
 ݍ1݁݇   ቀ

݀நሺ௦ሻ
݀௦

ቁ
2

 ds
ܮ

0
 w2    with    ݇ଵ ൌ

ಽమೄ
ಽభಽమାಽభೄାಽమೄ

 (11) 

ଶݑ  ൌ
ଵ

2
 ݍ2݁݇   ቀ

݀நሺ௦ሻ
݀௦

ቁ
2

 ds
ܮ

0
 w2    with    ݇ଶ ൌ

ಽభೄ
ಽభಽమାಽభೄାಽమೄ

 (12) 

where  kL1, kL2 are the longitudinal stiffnesses of KL1 and KL2 and 
 kS = EA/L is the axial beam stiffness. 
    From a further analytic decomposition of eqn. (10) and considering the results 
in eqns. (11) and (12), the strain energy absorbed by the left portion of the beam 
(s = 0→smax) can be expressed as: 

ఌ,→ୱೌೣܧ ൌ ܮ  kT   ቀ
݀நሺ௦ሻ
݀௦

ቁ
4

ds
ݔܽ݉ݏ
0


ݔܽ݉ݏ
ܮ
݇ܶ൫݇1݁ݍ  ൯ݍ2݁݇

2
ቀ ψሺݏሻ2ds

ܮ

0
ቁ
2
െ

2  ݇ܶ  ൫݇1݁ݍ  ൯ݍ2݁݇   ψሺݏሻ2  ds
ܮ

0
  ψሺݏሻ2  ds

ݔܽ݉ݏ
0

ቃ 
௪ర

଼
  (13) 
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From an energetical point of view, the left side of the beam behaves like a 
geometrical nonlinear spring, whose energy behaviour depends solely on w4 as in   

ఌ,ீேܧ ൌ
ಸಿಽ
8


4ݓ

2ݔܽ݉ݏ
                                              (14) 

hence 

	݇ீே ൌ ௫ଶݏ ܮ  ்݇  ቀ
ௗటሺ௦ሻ

ௗ௦
ቁ
ସ
ݏ݀

௦ೌೣ
 

ݔܽ݉ݏ

்݇൫݇ଵ  ݇ଶ൯

ଶ


ቀ ߰ሺݏሻଶ݀ݏ

 ቁ

ଶ
െ 2்݇൫݇ଵ  ݇ଶ൯  ߰ሺݏሻଶ݀ݏ


  ߰ሺݏሻଶ݀ݏ

௦ೌೣ


ቃ	  (15) 

After substituting the left side of the beam by a virtual spring KGNL with the same 
energy dissipating properties, the last step consists of defining the equivalent 
spring KH1 , which groups both the connector and the beam spring in one element 
(see fig. 6).  

 

Figure 6: Reduction procedure in order to determine KH1; a) original system; 
b) connector + equivalent beam model; c) final model. 

 
     Without further demonstration, it can be shown that the spring KH1 is 
equivalent from an energetical point of view to the serial connection of both 
springs KL1 and KGNL. Therefore the stiffness of the equivalent lateral spring KH1 
can be calculated with the expression: 

 ݇ுଵ ൌ
ଵ

భ
ೖಽభ	

ା
భ

ೖಸಿಽ

                                                    (16) 

where  kL1 is the lateral connector stiffness of spring KL1 and 
 kNGL  is the equivalent beam stiffness from eqn. (15) 
     In a very similar manner, the equivalent spring stiffness of KH2 can be derived 
to: 

݇ுଶ ൌ
ଵ

భ
ೖಽమ	

ା
భ

ೖಸಿೃ

                                                    (17) 

where  

݇ீேோ ൌ ൫ܮ െ ௫൯ݏ
ଶ
ቈܮ  ்݇  ቀ

ௗటሺ௦ሻ

ௗ௦
ቁ
ସ
ݏ݀


௦ೌೣ


ቀି௦ೌೣቁ


்݇൫݇ଵ  ݇ଶ൯

ଶ


ቀ ߰ሺݏሻଶ݀ݏ

 ቁ

ଶ
െ 2்݇൫݇ଵ  ݇ଶ൯  ߰ሺݏሻଶ݀ݏ


  ߰ሺݏሻଶ݀ݏ


௦ೌೣ

൨	  (18) 
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3.5 Equivalent yielding criteria 

As exposed in section  2.2, dynamic system reduction concepts consider 
nonlinear system behaviour by the definition of a nonlinear force-deformation 
relation. With increasing accuracy demands and the desire for including arbitrary 
support conditions, this curve has become increasingly complicated, thus making 
its determination or computer implementation considerably complicated.  
     In the presented concept, the force-deformation relations of all four springs 
have been defined elastic-perfectly plastic, thus making its analysis and 
implementation very simple. 
     In vertical direction the yield criteria is defined according to Biggs’ approach 
 [3]. The yield load can be calculated by the principle of virtual work for each 
individual loading distribution. In case of a uniform linear load (most common 
assumption), the yield load fpl can be calculated with eqn. (19). 

݂ ൌ 2 
ெାሺି௦ೌೣሻெ,ೃభା௦ೌೣெ,ೃమ

ሺି௦ೌೣሻ௦ೌೣ
                               (19) 

     In the case of asymmetrical boundary conditions, the yield load can be 
distributed according to the weighting functions from Eqn. (9). 
     In membrane direction, the yield criteria for the springs KH1 and KH2 should 
be chosen as the minimum between the connector capacity and the beam axial 
resistance Npl. 

4 Validation 

The behaviour of this new concept for an equivalent model reduction has been 
analysed with one example. Here the energy development of a strongly 
geometrical nonlinear system with high slenderness has been investigated under 
static load conditions. The results have been compared to an own 
implementation of the FEM with geometrically exact beam elements as 
described by Wriggers  [10].  
     Given a beam with a length L of 10m and a cross section of a U-60 with a 
steel grade of S235 for which the following cross-sectional properties apply:  
EI = 51710 N·m², EA = 112.57e6 N, with respective yielding limits of 
Mpl = 296.89e3 N·m and Npl = 134.01 N. An (unrealistic) high slenderness is 
taken here in order to appreciate the effects of membrane force activation before 
reaching any plastification limits. The member is uniformly loaded over the 
length with a load of 237.5 N/m, that corresponds to the plastic resistance of 
the beam assuming no catenary effects. 
     The boundary conditions have been set to free-free for the rotations and 
parametrically varied from free-free to fixed-fixed for the horizontal fixings. 
     In fig. 7 an analysis of the energy absorption dependency on the axial restrain 
is shown. Here three different models have been compared: (a) system modelled 
with linear beam elements, (b) system modelled with geometrically exact beam 
elements and (c) the equivalent system defined according to section  3.  
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Figure 7: Comparison of the strain energy components with varying lateral 
connector stiffness. 

     The results show a very good agreement between the exact beam theory and 
the proposed equivalent model in terms of energy absorption capabilities. 

5 Conclusions 

In this paper a new simplified design method has been proposed based on a new 
concept for dynamic system reduction. The proposed methodology reduces an 
axially and rotationally arbitrary supported beam to a 2DOF system consisting of 
a mass and 4 springs as presented in fig. 5. 
     The new reduction concept exposed in section 3 is designed to explicitly 
address geometrical nonlinearities by means of two lateral springs with a 
nonlinear strain definition. Section 4 shows the very similar energetic behaviour 
of the reduced and the original system, even in the elastic domain, where most 
classical approaches do not consider any membrane action.   
     This approach opens new possibilities for the dynamic analysis of structures. 
As exposed in section 2, there is a large separation between complex FE 
calculations and the use of simplified models. The main disadvantage of classical 
reduction techniques is the fact that they cannot be integrated to more complex 
FE systems, so that the analysis remains for one isolated member. This limitation 
is mainly due to the fact that they would only offer one connection node to the 
rest of the FE system, thus not being able to separate membrane effects from 
bending effects or asymmetrical support action. The new approach overcomes 
this limitation by offering 4 connection nodes that separately consider the effects 
of bending and membrane action for both for the left and right support.  
     An implementation of an “equivalent beam” element in a FE system is 
possible and opens the possibility for parametric studies on larger structural 
models. 
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