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Abstract 

This paper deals with the large deflection of rigid-plastic structural members 
subjected to intense dynamic loads, such as explosive pressure and impact 
loadings. From the viewpoint of energy equilibrium, a theoretical procedure 
called the Membrane Factor Method was proposed by the authors in analyzing 
the dynamic plastic response of beams and plates with deflections in the range 
where both bending moments and membrane forces are of significance. The 
Membrane Factor Method is generalized and elaborated and its applications to 
various cases of dynamically loaded beams and plates are surveyed, with the 
expressions of the modifying membrane factors in each case being summarized 
and discussed. It is seen from comparison that the predictions by this method on 
the final deflections of beams and plates agree well with the corresponding 
experimental results for deflections up to 5–10 times of thickness. This 
procedure greatly improves the estimates from the bending-only theory and 
provides feasible complete response analyses, whose predictions are much more 
reliable than modal approximations. 
Keywords:  Membrane F  actor Method, large deflection, plastic response, beam, 
plate, intense dynamic load.  

1 Introduction 

Large dynamic plastic deformation of structures is of significant interest in many 
engineering problems, such as safety calculations, hazard assessments, forensic 
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investigations of ductile structures which are subjected to explosions or large 
dynamic loads producing an inelastic response.  
     Most of the earlier theoretical studies on dynamic plastic response of 
structures were limited to small deformation [1]. Nevertheless, the contradiction 
between the assumption on small deflection and the rigid-plastic idealization, 
which implies that the deflection caused by intensive loading is far beyond the 
elastic regime, greatly limits the practical validity of the small deflection 
solutions. Beams and plates under impact loading have been examined by many 
researchers theoretically or experimentally [2–8]. Experimental results revealed 
that membrane force play a remarkable role and even dominate the behaviour of 
structures when transverse deflection reaches or excesses the thickness [6–8]. 
But the complexity arising from both physical (plasticity) and geometrical 
nonlinearity makes large deflection problems rather complicated to treat 
theoretically when conventional methods are used, especially if dynamic effect is 
involved.  
     Large deflection, in general, may cause two kinds of effect on the dynamic 
plastic behaviour of structures: i) change in geometric configuration; and ii) 
development of the membrane, or in-plane, force. For a beam with end supports 
that prevent axial movement or a plate in most edge conditions, when the 
maximum deflection reaches or exceeds its thickness, membrane force will be 
induced. The large deflection effect in these cases is essentially represented by 
the membrane force effect. The membrane force induced by large deflection 
dissipates energy and stiffens the structure.  
     From the viewpoint of energy equilibrium, a theoretical procedure called 
Membrane Factor Method was proposed by the authors (see, e.g. [9, 10, 14]) in 
analyzing the dynamic plastic response of beams and plates with deflections 
in the range where both bending moments and membrane forces are of 
significance. In this paper, the Membrane Factor Method is generalized and 
elaborated and its applications to various cases of dynamically loaded beams and 
plates are surveyed. General characteristics of this method are demonstrated. 

2 Membrane Factor Method 

Consider a beam with end axial constraints or a plate secured along its contour, 
which is assumed to be made of a rigid, perfectly plastic material. Let 0M denote 

its fully plastic bending moment. When the deflection reaches the order of its 
thickness, the influence of large deflection is essentially represented by the 
membrane (axial) force effect. From the viewpoint of energy dissipation, taking 
account of the contribution of the membrane force induced by large deflection is 
equivalent to regarding the beam or plate as one having a plastic bending 
moment that varies with the deflection. Hence, we may introduce a factor nf , 

which represents the effect of membrane force and depends on the deflection of 
the beam or plate, to modify the equations of motion based on small deflection 
assumption by a change nfMM 00  , which implies that the energy dissipation 

at a hinge in the beam or plate is modified (enlarged); in other words, the 
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bending moment at a plastic hinge is now assumed to be nfM 0 rather than 

.0M Accordingly, the equations of motion for large deflection are 

straightforwardly formulated. 
     From energy equilibrium principle, the modifying factor nf that accounts for 

the effect of the membrane force induced by large deflection can be defined as 
 ,mmnn JJf                                                    (1) 

where mnJ is the plastic energy dissipation rate due to both bending and 

membrane stretching using interactive yield condition between bending moment 
and membrane force, mJ is the dissipation rate merely due to bending from small 

deflection theory.  

3 Case studies of beams 

3.1 Beams under impulsive loading 

Consider a fully-clamped or a simply supported beam of length 2L and mass per 
unit length m, subjected to an impulsive pressure resulting in a uniformly 
distributed velocity 0V  (as shown in Fig. 1). As is known, the deformation 

mechanism is constructed by plastic hinges and rigid segments, and the response 
history consists of two phases: the first (transient) phase, which is characterized 
by travelling plastic hinges, and the succeeding (modal) phase, with all plastic 
hinges stationary. The so-called plastic hinge here means a generalized one under 
the interaction between bending moment M and axial force N (Fig. 2). 
 

 

Figure 1: Beams under impulsive loading: (a) fully-clamped; (b) simply 
supported with end axial constraints.  

     Using the Membrane Factor Method, the equations of motion for large 
deflection of fully-clamped beam can be easily found as [10] 

                                                        0VL  ,                                                    (2) 

V0 

(a)

V0 

2L (b)

A A’

A A’

B B’
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in the first phase, and 

                                                  nfMmL 0
3 23                                               (4) 

in the second phase. For equations of motion of the simply supported beam with 
end axial constraints, the only change is the replacement of 02M  by 0M in 

eqns. (3) and (4). The governing equations (2)–(4) are close-formed, provided 
that the membrane factor nf is determined. 
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Figure 2: Interactive plastic yield condition. 

 

Figure 3: Forces on segment AB. 

     The key of formulation is to find the membrane factor nf . For the fully-

clamped beam, referring to segment AB in Fig. 3 (B is a travelling plastic hinge) 
and letting Ls  , the elongation rate of half the beam is 

t

ssss
t 






)()()(
lim

2222

0

 .                     (5) 

With deflection s , it reduces to    . From the interactive plastic yield 

condition and associated normal flow rule  2dNdM , we find at 

generalized plastic hinges A and B, 

B 
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         2
0 1 MM , 0NN                                          (6) 

when 1 H . It follows that the plastic dissipation rate in half the beam 

due to both bending and axial stretching is  

 2
0 1222    MNMJ mn .                                 (7) 

On the other hand, bending-only analysis results in 0MM   and 0N at the 

plastic hinges, as a result the plastic dissipation rate in half the beam merely due 
to bending is  

  022 MJ m  .                                                (8) 

     Substituting eqns. (7) and (8) into (1) yields  
21 nf ,                                                   (9) 

for 1 H . When 1 H , 0M and 0NN  , as a result, 2nf . It 

is convenient to express the membrane factor in a complete form 









.1when,2

;1when,1 2




nf                                       (10) 

     Similarly, for the simply supported beam, noting that its two ends are natural 
hinges instead of plastic ones, it turns out that 









.21when,4

;21when,41 2




nf                                  (11) 

From eqns. (10) and (11), it is seen that nf  merely depends on the dimensionless 

central deflection H  .  

     Solving eqns. (2)–(4) coupling with the complementary equation (10) yields 
the final dimensionless deflection Hff   as  

8if,2
6

1
;8if,

6

1

3

1 3   fff              (12) 

For the fully-clamped beam, in which HMVmL 0
2

0
2 is a dimensionless 

impact parameter. Similarly, for the simply supported beam,  

2if,
2

1

6

1
;2if,

3

1

3

4 3   fff              (13) 

It is seen that by the Membrane Factor Method, the large deflection solution has 
a succinctly analytical form. 

3.2 Beam-on-foundation under impact 

Yu and Stronge [9] first tentatively introduced membrane factor to represent the 
large deflection effect in the dynamic response of a rigid-plastic beam-on-
foundation from impact (Fig. 4). The membrane factor was found to have the 
same form of eqn. (10), where Hw0 and w0 is deflection at the impact point.  

     With the modifying membrane factor, equations of motion for large 
deflection analysis were derived as [9] 
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


                                (14) 

     Eqns. (14) were solved by a Runge-Kutta integration procedure, so that the 
entire response history (including a transient phase) can be traced (see Fig. 5). 
 
 

 

Figure 4: Impact against rigid-plastic beam on perfectly plastic foundation. 

 

 

Figure 5: Response history of a beam-on-foundation after impact. 

3.3 Fully-camped beam under impact load 

A fully-clamped beam struck transversely at its mid-span by a mass was 
examined in [11], as illustrated in Fig. 6. After impact, the striker is supposed to 
 

 

Figure 6: A fully-clamped beam subjected to impact load. 
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adhere to the beam always. The membrane factor was found to have the same 
form of eqn. (10) and the equations of motion for large deflection are 











nfMZsmsZms

ZsmZmsG

0
2 122

;0)(



                                 (15) 

for the first transient phase; and 
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1
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2

1
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2
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                  (16) 

for the succeeding modal phase. The final deflection of the beam is analytical: 

                             





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where 











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L

H
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0
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0

M
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 .  

4 Case studies of plates 

4.1 Circular plates 

Consider a simply supported circular plate subjected to an impulse resulting in 
uniformly distributed velocity, as shown in Fig. 7. Two membrane factors 
corresponding respectively to the r and  direction were deducted as [12] 









21when,4

;21when,41 2




nrf  ; 








.21when,612

;21when,341 2




nf        (18) 

 

 

Figure 7: A simply supported circular plate subjected to impulsive loading. 

 
So the equation of motion for large deflection was established as 

    
r

nnrr rdrwfMfrM
0

')(                                     (19) 

where r )()( ' . As a result, final deflection of the plate was found as  

V0 

R

H 

r 
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where ,0
22

0 HMRV  1 ,  are dimensionless parameters. 

4.2 Regular polygonal plates 

An n-side (e.g. 6n ) regular polygonal plate with simply supported or fully 
clamped edges are subjected to an impulsive loading, its deformation pattern is 
illustrated in Fig. 8 with n plastic hinge lines travelling inward until shrinking at 
the centre [13]. Refer to [3], the plastic dissipation rate due to the interaction 
between bending moment and membrane force along a plastic hinge line in a 

plate is imn MNwD )(  , while the plastic dissipation rate due to bending-only 

is im MD 0 . Therefore, the membrane factor was found as 









21ηwhen),612(612

21when,3)21(41 2




nf                        (21) 

for simply supported edges, and 









1when,)1(21

1when,232)1(1 22




nf                         (22) 

for fully-camped edges, in which  is a parameter indicating the position of the 

inward travelling plastic hinge lines. 
 

 

Figure 8: Deformation pattern of n-side (e.g. n = 6) regular polygonal plate 
under impulsive loading. 

     It turns out that the final central deflection of a regular polygonal plate with 
simply supported edges is  
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where ]4)1()1[()48(1 2
112  R . 

4.3 Rectangular plates 

Rectangular plates are of more practical value to engineers. For a rectangular 
plate secured along its entire contour subjected to a uniformly distributed load of 
intensity P(t), the deformation mechanisms are shown in Fig. 9, where dashed 
are plastic hinge lines. Two membrane factors corresponding to the horizontal 
and vertical direction were derived as [14] 

        


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

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2 


nf                             (26) 

for fully-camped edges, in which  and  denote the position of travelling 

plastic hinge lines. 
     Thus, equations of motion for large deflection are 
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n

                        (27) 

For the special case of impulsive loading, eqns. (27) were reduced and then 
solved by integrating with time to trace the entire large deflection dynamic 
plastic response (including a transient phase) [14]. The role of plastic energy 
dissipation by membrane forces in the dynamic plastic response of rectangular 
plates was further examined by the authors in [15]. 
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Figure 9: Deformation mechanisms of a rectangular plate. 

5 Discussion and comparison of results 

The above case studies show that the Membrane Factor Method (MFM) provides 
an effective way to deal with the large deflection plastic response of structures 
subjected to intense dynamic loads. The merits of this approach are obvious: (i) 
it can easily trace the entire response history including a first transient phase and 
succeeding modal phase; (ii) the membrane factors can usually be expressed as 
analytical functions of dimensionless deflection of beams or plates, for plates 
parameters describing the position of plastic hinge lines may be involved; (iii) 
the established governing equations or solutions on the final deflection are 
usually in favourably succinct form. 
 

 

Figure 10: Comparison of results of beam under impact load. 

     Figure 10 presents a comparison of theoretical predictions on final deflection 
of fully-clamped beam subjected to impact load with experiment. It is seen that 
while the bending-only solution deviates far away from the experimental records 
once the deflection reaches the order of its thickness, the large deflection 
solution by MFM, although in very succinct form (eqn. (17)), agrees well with 
the experimental results when the deflection is several times of beam thickness.  
     A comparison of the results for simply supported circular plates subjected to 
impulsive loading is shown in Fig. 11. It is seen that when the final deflection 
 

a 

b 

b b 

a 
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Figure 11: Final deflection of circular plates subjected to impulsive loading: A: 
bending-only theory [2]; B: solution by the MFM. 

reaches the order of plate thickness, the theoretical predictions by MFM agrees 
well with experimental results by Florence [7], whereas the bending-only theory 
incurs obvious discrepancy. 
     Figure 12 gives a comparison of the theoretical predictions on final deflection 
of impulsively loaded rectangular plates with corresponding experimental results. 
A, B are upper bounds based on small deflection analysis by Jones et al. [8]; C, 
C’ are upper and lower bounds based on a small deflection analysis by Komarov  
 

 

Figure 12: Comparison of theoretical predictions on final deflection of fully-
clamped rectangular plates with experimental results. 
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and Nemirovskii [16]; D is bending-only theory solution (i.e. 1nf ); E is 

approximate solution of finite deflection based on modal deformation profile [3]; 
F is large deflection solution by the Membrane Factor Method; G is solution in 
[15]. Experimental results are taken from [8]. It once again verifies that the 
Membrane Factor Method can give good theoretical predictions for deflections 
up to more than 5 times of the plate thickness. 

6 Conclusion 

From the viewpoint of energy equilibrium, a theoretical procedure called 
Membrane Factor Method was proposed by the authors in analyzing the dynamic 
plastic response of beams and plates with deflections in the range where both 
bending moments and membrane forces are of significance. Case studies show 
that the predictions by this method on the final deflections of beams and plates 
agree well with corresponding experimental results for deflections up to 5-10 
times of thickness. This procedure greatly improves the estimates from the 
bending-only theory and provides feasible complete response (including the 
transient phase) analyses, whose predictions are much more reliable than modal 
approximations. Furthermore, this method is applicable to more complicated 
structures [17]. 
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