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Abstract 

The focus of this work is to present, from a practical point of view, a 
methodology able to tune the dynamic behaviour of complex assembled 
structures in frequency domain and optimizing the parameters, in terms of 
stiffness and damping, of lumped elements at junction points among structural 
components. Performing sensitivity studies through evaluating the impact of a 
set of modifications in the dynamic behaviour of complex structures by means of 
running several FEM models, requires significant computational effort and even 
if it is accepted, it is often not able to fit the experimental data adequately. In this 
context, the Direct Structural Dynamic Modification Method is defined as the 
procedure which permits one to evaluate the impact of a set of changes on the 
structural dynamic behaviour, without the need to continuously re-run the FEM 
Model. The Inverse SDM problem aims to identify in the framework of physical 
compatible sets of modifications, the most appropriate in order to fit the desired 
dynamic behaviour. In this study the ISDM problem is completed in order to be 
implemented efficiently in MATLAB and is applied to fit the analytical 
Frequency Response Functions (FRFs) with the experimental results. The full 
aircraft model and the Ground Vibration Test of the A340-600 are considered in 
order to test the power of the method when applied to a real and complex 
structure. From the results it can be seen that the parameters of the lumped 
elements at the interfaces among components are efficiently optimized in order 
to improve the dynamic response of the structure. The physical understanding of 
junction behaviour permits appropriate definition of the constraints of the 
optimization problem and to get a global minimum of the objective function. The 
results are shown in terms of FRFs and in terms of global FRF indicators 
Keywords: frequency response functions, junction identification, structural 
dynamic modification, complex mode indicator function, frequency domain 
assurance criteria. 
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1 Introduction 

Finite Element Models are widely used in structural dynamics in order to study 
and predict the behaviour of real structures. Today the demand for high-quality 
models and the accompanying processing techniques are growing fast and, at the 
same time, the products get more complex and intricate. It is possible to affirm 
that, whilst the modelling and dynamic response prediction techniques for 
individual structural components have been well developed, when a similar 
procedure is extended to structural assemblies, the prediction quality deteriorates 
quickly. For example as the number of components in the assembly increases the 
calculation quality declines because the connection mechanisms between 
components are not represented sufficiently. For a long time the lack of 
reliability in modelling the junctions in complex assemblies has been under 
estimated, hence its effect on the global dynamic behaviour is neglected. 

2 Objective of the work 

The focus of this work is to present, from a practical point of view, a 
methodology able to tune the dynamic behaviour of complex assembled 
structures in frequency domain and optimizing the parameters of lumped 
elements at junction points among structural components. From a modelling and 
computational point of view, if it is true that most of the junctions can be seen as 
localized sources of stiffness and damping, these can be modelled as lumped 
spring/damper elements. On the other hand a lack of reliability occurs because 
the properties, in terms of stiffness and damping, are normally unknown and just 
assumed on the basis of experience. 
     Performing sensitivity studies through evaluating the impact of a set of 
modifications in the dynamic behaviour of complex structures by means of 
running several FEM Models, requires significant computational effort and even 
if it is accepted, it is often not able to fit the experimental data adequately. 
In this context the Structural Dynamic Modification (SDM) Method is defined as 
the procedure which permits one to evaluate the impact of a set of changes on the 
structural dynamic behaviour, without the need to continuously re-run the FEM 
Model. 
     In this study the DIRECT SDM problem has been completed in order to be 
implemented efficiently in MATLAB but the focus is on the Inverse Structural 
Dynamic Modification (ISDM) Method, which has been applied to fit the 
analytical Frequency Response Functions (FRFs) with the experimental results. 
The full aircraft model and the Ground Vibration Test of the A340-600 have 
been considered in order to test the power of the method when applied to a real 
and complex structure. 
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3 Scenario 

3.1 Experimental data: A340-600 ground vibration test (GVT) 

Dedicated sensor plans for each structural part and, at interfaces among 
components, are used during the A340-600 GVT. Several load condition are 
applied during the test and some of them are selected as the most appropriate for 
this study. They are: Vertical Tail-Plane (VTP) loaded in X and Y directions and 
Horizontal Tail-Plane (HTP) loaded in X and Z directions. Particularly the VTP 
– X loading condition is considered in order to show the procedure and the 
results. The Frequency Response Functions (FRFs) of the sensors of interest are 
analyzed in order to find out what physical phenomena happen across the 
junctions. The frequency range covered is between 2.5 and 25 Hz. 
 

 

Figure 1: A340-600 GVT. 

     The focus of this study is on the interfaces between the Auxiliary Power Unit 
(APU) and its Suspension System. The APU is installed in the A346 Tail-Cone 
by its Suspension System, which has a double purpose: to sustain the inertia 
loads at which the APU is submitted and to isolate the airframe from the APU’s 
vibrations. 
     The Suspension System consists of 3 principals subassembly called: 
o Left-Hand: 3 rods, 3 APU lugs on structure side, 1 Rubber Mount 
o Right -Hand: 2 rods, 2 APU lugs on structure side, 1 Rubber Mount  
o Aft –Hand: 2 rods, 2 APU lugs on structure side, 1 Rubber Mount 
Each rubber mount is done by a steel isolator housing with an elastomeric inside.  
     Couples of tri-axial accelerometers are installed across each rubber mount, 
one on the APU bracket and the other on the isolator housing. 
     The following pictures show the geometrical configuration of the Suspension 
System (fig. 2) and the experimental FRFs across one of the rubber mounts 
(fig. 3). 

Structures Under Shock and Impact XII  217

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 126, © 201  WIT Press2



  

Figure 2: APU suspension system and detail of the LH rubber mount. 

 

Figure 3: Experimental FRFs across the LH rubber mount. 

     The analysis of experimental FRFs of the sensors located at rubber mounts 
shows that hardening, softening and dissipation phenomena happen across the 
junction. These effects arise for frequency values above the 15 Hz. It is expected 
because only above this frequency value the local APU modes become relevant. 
Hence the junction dynamic behaviour is firstly driven by the global modes and 
then, when local modes arise, the proper modelling of junction properties 
became relevant. 

3.2 A340-600 finite element model and comparison 

For this study the full A340-600 Finite Element Model (FEM) is used. The 
Global FE Model has been properly validated and tuned for the low frequency 
range between 2 and 14 Hz. It means that for degrees of freedom close to the 
excitation point no big discrepancy among experimental and theoretical FRFs is 
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expected. Nevertheless, for the sensors of the APU Rubber Mounts, particularly 
above the 15 Hz, a certain degree of discrepancy is expected, due to the local 
behaviour. 
 

 

Figure 4: A340-600 Finite Element Model. 

     In order to compare analytical and experimental results: 
o The coherence between experimental parameters and nodes, in terms of 

geometrical position and reference coordinate systems, is defined. 
o The same experimental load conditions are applied to the FE Model and the 

analytical FRFs are calculated.  
o The full set of FRFs, experimental versus analytical, are compared in terms 

one-to-one FRF and global FRF indicators. Generally speaking the 
indicators permit to combine the FRFs in order to have a clear understanding 
about the degree of reliability of the FE Model. They are: the Complex 
Mode Indicator Function (CMIF) and the Frequency Domain Assurance 
Criteria (FDAC). 

3.3 Global FRF indicators 

3.3.1 Complex mode indicator function 
The concept of CMIF is developed by performing Singular Value 
Decomposition (SVD) of the Transfer Function Matrix (TFM) at each spectral 
line. The CMIF returns the eigenvalues, which are the square of singular values, 
associated with the Modal Matrix. It is a simple and efficient method for 
identifying the modes of a complex system. The peaks detected in the CMIF 
indicate the existence of modes, and the corresponding located frequencies of 
these peaks give the damped natural frequency for each mode.  
     If the CMIF of the experimental sensors of the VTP (where the load is 
applied) is compared against the CMIF of the experimental sensors of the rubber 
mounts (fig. 6), it can be highlighted again, that there is a low frequency range 
where the dynamic behavior of the junction is driven by the global modes, and 
above the 15 Hz local modes arise (fig. 5). 
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Figure 5: Tail-Cone and APU local mode at 15 Hz. 

 

 

Figure 6: Experimental CMIF: VTP vs. rubber mounts 

3.3.2 Frequency domain assurance criteria 
The FDAC coefficients represent the correlation between two sets of FRFs at 
specific frequencies across the full spatial/coordinate domain. 
     It expresses the shape correlation between measured and predicted response. 
Because FDAC evaluates the shape of an FRF, which is mainly determined by 
the position and amount of resonance peaks, this function is most sensitive to 
changes of mass and stiffness modeling.  
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4 Structural dynamic modification 

4.1 Overview of the SDM method 

Structural Dynamic Modification (SDM) Method is defined as the procedure 
which permits one to evaluate the impact of a set of changes on the structural 
dynamic behaviour, without the need to continuously re-run the FEM Model. 
The modified dynamic behaviour can be expressed as function of the baseline 
FEM Dynamic Database and the set of modifications. 
     Many authors have formulated and completed the theoretical problem, 
highlighting that the method becomes particularly efficient if into the 
modification lumped elements are involved. Lumped modifications consist of 
whatever relationship between two degrees of freedom, both of the structure or 
one degree of freedom belonging to the structure and another one belonging to 
an external fixed point. Usually the relationship is expressed as a combination of 
lumped masses, spring and damper elements. 
     The baseline FEM Dynamic Database can be expressed by the modal 
database made of eigenvalues and eigenvectors (real or complex), or by the 
frequency response function (FRF) database, in which case the Transfer Function 
Matrix (TFM) is available. 
 
     Two problems could be faced: 
 The Direct SDM (DSDM) problem consists in evaluating the effect of a 

given set of changes on the dynamic behaviour of the structure  
 The Inverse SDM (ISDM) problem, more complex, aims to identify in the 

framework of physical compatible sets of modifications, the most 
appropriate in order to fit the desired dynamic behaviour. 

 
     Sestieri [1] exhaustively explains and completes the theoretical DIRECT 
SDM problem, giving a complete and critical overview about approaching the 
DSDM by the use of the modal database and the FRF database. 
     In this study the DIRECT SDM problem has been completed in order to be 
implemented efficiently in MATLAB but the focus is on the Inverse Structural 
Dynamic Modification (ISDM) Method, which has been applied to fit the 
analytical Frequency Response Functions (FRFs) with the experimental results.  

4.2 Mathematical formulation of the direct structural dynamic 
modification method 

The dynamic equation of the baseline model, in frequency domain and physical 
coordinates, is: 

 )()()( 00  FHu   (1) 
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Being )(0 H the well-known Transfer Function Matrix (TFM). 

   12
0 )(


 KCjMH   (2) 

where M, C, K, are the Mass, Damping and Stiffness Matrices of the Baseline 
Finite Element Model. 
     The Dynamic Stiffness Matrix of the baseline structure is defined as: 

  KCjMHB    21
00 )()(  (3) 

     And being the modifications described by the following matrix: 

  KCjMB   2)(  (4) 

     The dynamic equation of the modified model, under the same loading 
conditions, in frequency domain and physical coordinates, is: 

   )()()()( mod0  uBBF   (5) 

     Finally combining the two equations, (1) and (5), the relationship, which 
expresses the modified TFM as function of the baseline TFM and the 
Modification Matrix, is obtained: 

   )()()()()()( mod000  uBHIFHu   (6) 

   )()()()( 0
1

0mod  HBHIH   (7)  

     If the modification matrix involves only few degrees of freedom of the totals 
the Equation (7) can be efficiently rearranged in order to obtain a significant 
advantage from a computation point of view. 
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is the Modification Matrix of the degrees of freedom involved into the 
modification and X is the vector of the parameters which describe the 
modification. 
     The computation performed by means of the Equation 4 must be repeated for 
all the frequency values of interest.  
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     The Modification Matrix, containing the whole set of modifications, is a 
function of: 

o the coordinates of the degrees of freedom where each modification will 
be applied,  

o the parameters which define the lumped modification  
o the frequency values of interest. 

     More details can be found in references Sestieri [1] and Sanliturk [2]. 

4.3 Inverse structural dynamic modification 

The great computational efficiency of the SDM method makes it suitable to be 
implemented into an optimization problem.  
     The parameters of the problem, in terms of lumped mass, stiffness and 
damping, can be optimized in order to minimize the error between the analytical 
and the experimental Transfer Function Matrices. Hence the Inverse SDM 
(ISDM) problem can be properly planned in order to identify in the framework 
of physical compatible sets of modifications, the most appropriate for fitting the 
experimental dynamic behaviour. 
     The following Objective Function (OF) can be defined: 
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     The sum is extended to all the experimental sensors and to the whole 
frequency range of interest. 
     Being the Transfer Function Matrices complex, both, magnitude and phase 
need to be taken into account. The Weight Factor (WF) can be used to change 
the priority of the optimization between the magnitude and the phase. 
     Clearly, the vector X, containing the parameters which describe the 
modifications, is the unknown of the problem. 

5 Optimization of rubber mounts parameters 

The parameters, in term of stiffness and damping, of the lumped elements at the 
interfaces between the APU and its Suspension System are optimized in order to 
improve the dynamic response of the structure when compared with the 
experimental data. The frequency range considered is between 13–25 Hz, 
because only above the 15 Hz the APU modes become relevant. These 
spring/damper elements are intent to simulate the rubber mounts of the APU 
suspension system, hence the physical understanding of the rubber behaviour 
permit to define properly the constraints of the optimization problem and to get a 
global minimum of the objective function.  
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     Each lumped element, connecting pair of degrees of freedom, has two 
parameters, one defining the stiffness and the other defining the hysteretic 
damping ratio: 

  )(1)(),,(  elemelemelem jhKhKB   (11) 

     The Modification Matrix for all the structure is: 

 



elemN

p
pppBB hKBhKB

1

),,(),,(   (12) 

     Considering all the translational degrees of freedom and the three 
subassemblies of the Suspension System, finally 18 variables need to be 
optimized for each frequency value. 
     The constraints of the optimization problem come from the physical and 
geometrical properties of the rubber mounts. For each rubber mount, the stiffness 
in X and Y directions is supposed to be the same, and the Z-axial stiffness is 
generally higher than the laterals stiffness in X and Y directions. The Right-Hand 
and Left-Hand Isolators are geometrically identical and consequently they are 
supposed to have the same mechanical properties. The stiffness properties of the 
Aft-Hand Isolator are higher than the stiffness properties of the Right-Hand and 
Left-Hand Isolators. All these equalities and inequalities constraint equations are 
considered within a 15% of uncertainty. 
     This permits the appropriate definition of the constraints of the optimization 
problem and to get a global minimum of the objective function. A nonlinear least 
square method has been applied in MATLAB environment through the use of the 
function ‘fmincon’. 

6 Summary of results 

From the results of the optimization it can be seen that the dynamic behaviour is 
efficiently improved, even more if it is considered that the rubber mounts are 
particularly complex due to several dependencies, such as: frequency, dynamic 
amplitude, preload, temperature, which strongly affect the dynamic behaviour. 
     The value of the Objective Function, which quantifies the error between the 
experimental and the analytical Transfer Function Matrices, for the FE Baseline 
Model is about 104.  After the optimization, this value, clearly cannot go to zero, 
but reaches a very low value, less than 102.  
     The results are shown below in terms of Frequency Response Functions, both 
magnitude and phase have been considered (fig. 7). This permits a direct 
comparison of each experimental value versus the analytical one, and in terms of 
Global Indicators (in which all the FRFs are combined in order to obtain one 
representative value), such as Frequency Domain Assurance Criteria (FDAC, 
fig. 8) and Complex Mode Indicator Function (CMIF, fig. 9), allowing 
determination of how the global dynamic behaviour of the system has been 
improved. 
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Figure 7: Inverse SDM: FRF results of sensor APU: 200001+X. 

 

Figure 8: Inverse SDM: FDAC results. 

 

Figure 9: Inverse SDM: CMIF results. 

Structures Under Shock and Impact XII  225

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 126, © 201  WIT Press2



7 Conclusion 

The Structural Junction Identification Methodology is a process which permits: 
o to understand what is the frequency range where the local dynamic 

behaviour of the junctions becomes relevant. The use of the CMIF, 
calculated for the experimental sensors of interest, can be particularly useful 
in order to achieve that understanding.   It is worth pointing out that when 
large FE Models are used, the dynamic behaviour of the junction is firstly 
driven by the global modes and then, above a certain value of frequency, 
local modes arise. It means that a local correlation cannot be satisfactory 
gotten if, previously, the Global FE Model behaviour has not been properly 
validated and tuned; 

o to perform, with a very low computational cost (minutes), sensitive analysis 
of the TFM against a change of the stiffness and damping properties of the 
lumped elements at junction interfaces. That is achieved through the use of 
the SDM method; 

o to set-up the optimum values for the lumped elements, basically in terms of 
stiffness, mass and damping, through the use of the Inverse SDM. Once the 
global tuning of the model is completed, the Inverse SDM can be efficiently 
implemented in order to find the optimum set of lumped modifications and 
improving, consequently, the local dynamic behaviour. The physical 
understanding of junction behaviour permits appropriate definition of the 
constraints of the optimization problem and to get a global minimum of the 
objective function.  

     During all the process, the Global FRF Indicators (CMIF and FDAC) can be 
successfully used in order to find out the degree of correlation between analytical 
and experimental results. 
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