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Abstract 

The dynamic plastic behaviour of circular conical shells subjected to lateral 
distributed loading is investigated. The intensity of the loading is assumed to 
follow the form of the rectangular impulse. The material of shells is an ideal 
perfectly plastic material obeying the square yield condition and the associated 
flow law. For determination of maximal residual deflections an approximate 
method of mode form motions is developed. 
Keywords: plasticity, impact loading, conical shell. 

1 Introduction 

The wide practical use of thin walled plates and shells as parts of bodies of 
vehicles and ship hulls involves the need for knowledge about the behaviour of 
the shells in extreme conditions and under impact loadings. 
     Exact solutions, approximate theoretical predictions and experimental 
verifications of the dynamic plastic response of plates and shells to impulsive 
and impact loading have been presented by Jones [1], Chakrabarty [2], 
Kaliszky [3], Stronge and Yu [4]. A lot of attention has been paid to the dynamic 
plastic response of axisymmetric plates (see Jones [1], Shen and Jones [5], Wang 
et al. [6]). However, much less information can be found in the literature about 
inelastic behaviour of shells. The limit analysis of circular conical shells 
subjected to the distributed lateral loading and of shells loaded by the central 
rigid boss can be found in the books and papers by Chakrabarty [2], Kaliszky [3] 
also by Ross [7], Lellep and Puman [8].  
     In the present paper an approximate method is developed for evaluation of 
residual deflections of perfectly plastic conical shells of piece wise constant 
thickness subjected to the impact loading. 

Structures Under Shock and Impact XII  15

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 126, © 201  WIT Press2

doi:10.2495/SU120021



2 Formulation of the problem 

Let us consider a circular conical shell of piece wise constant thickness (Fig. 1). 
The shell is simply supported or clamped at the outer edge of radius R, whereas 
the inner edge of radius a is absolutely free. The thickness of the shell wall h is 
piece wise constant. Let us denote 

 ݄ ൌ ௝݄ (1) 

for ݎ א ൫ ௝ܽ, ௝ܽାଵ൯ where ݆ ൌ 0,… , ݊ and ܽ଴ ൌ ܽ, ܽ௡ାଵ ൌ ܴ,  beeing the current ݎ
radius. Here ௝݄ and ௝ܽ where ݆ ൌ 0,… , ݊ stand for given constants. 
 

 

Figure 1: Conical shell subjected the uniformly distributed lateral pressure.  

     Let the axisymmetric conical shell be subjected to the uniformly distributed 
lateral pressure loading of intensity ܲሺݐሻ where 

 ܲሺݐሻ ൌ ൜
ݐ   ,ܲ א ሾ0, ଴ሿݐ
ݐ   ,0 ൐        ଴ݐ

 (2) 

     The time interval ሺ0,  ଴ሻ is assumed to be a relatively small interval so thatݐ
during this short interval particles of the shell wall gain certain velocity, the 
subsequent motion takes place due to the inertia.  
     The material of the shell is assumed to be an ideal rigid-plastic material. 
Elastic deformations as well as strain hardening will be neglected in the present 
paper. It is well known that the concept of a rigid plastic body enables to study 
the structural behaviour without paying any attention to the stress concentration. 
This is possible due to the matter that in plastic regions the stress components 
have limited (finite) values. The rigid plastic model of a material was 
successfully used by Jones [1], Chakrabarty [2], Kaliszky [3] and others for 
solving dynamic problems of plastic bodies. It was shown that theoretical 
predictions compare favourably with experimental data. The exact yield surface 
is approximated with the squares on planes of bending moments and membrane 
forces, respectively.  

3 Governing equations and basic assumptions 

Due to the axial symmetry the stress resultants contributing to the internal energy 
dissipation ܦపሶ  are the membrane forces ଵܰ, ଶܰ and bending moments ܯଵ,ܯଶ. 
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The influence of the shear stress ܳଵ on the energy dissipation will be neglected 
in the classical bending theory but it is taken into account in the refined theories. 
The both approaches will be discussed in the present paper. 
     The stress resultants must correspond to points lying on the yield surface or 
being interior points of the surface. Since the exact yield surface corresponding 
to the Tresca condition has a complicated structure the approximate two-moment 
limited interaction yield condition will be used in the present paper. This 
approximation is widely used in the mechanics of inelastic shells [1–4]. 
     The equilibrium conditions of a shell element lead to the equilibrium 
equations 

                   
ௗ

ௗ௥
ሺݎ ଵܰሻ െ ଶܰ ൌ 0,  

(3) 
 

݀
ݎ݀
൤
݀
ݎ݀
ሺܯݎଵሻ െ ଶ൨ܯ െ

ଶܰ sin߮
cosଶ ߮

൅
ݎ

cosଶ ߮
൫ܲ െ  ҧߤ ݄ ሷܹ ൯ ൌ 0. 

Here ߮ is the angle of inclination of the generator of the middle surface of the 
shell whereas ߤҧ݄ stands for the mass per unit area. The quantity ܹ is the 
transverse deflection and dots denote the differentiation with respect to time t. It 
is assumed that the displacement ܷ (which is perpendicular with respect to ܹ) is 
small and it will be neglected in the present paper. 
     The strain rate components corresponding to the equilibrium equations 
eqns (3) can be presented as (here ߝଵ, ,ଶ are linear elongations and ଵߝ ଶ stand 
for curvatures) 

ଵሶߝ   ൌ
݀ ሶܷ

ݎ݀
cos  ߮ , ሶଶߝ ൌ

1
ݎ
൫ ሶܷ cos  ߮ ൅ ሶܹ sin߮൯, 

(4) 

ଵሶ ൌ  െ
଴ܯ

଴ܰ

݀ଶ ሶܹ

ଶݎ݀
cosଶ ߮ , ଶሶ ൌ െ

଴ܯ

଴ܰ

݀ ሶܹ

ݎ݀
cosଶ ߮. 

     Here ܯ଴ and ଴ܰ stand for the yield moment and the yield force, respectively. 
Thus ܯ଴ ൌ ଴݄ଶߪ 4,    ଴ܰ ൌ⁄ ,଴݄ߪ  .଴ being the yield stress of the materialߪ  
     It is reasonable to introduce following non-dimensional quantities 
 

ߩ ൌ
ݎ
ܴ
௝ߙ   , ൌ

௝ܽ

ܴ
௝ߛ   , ൌ

௝݄

כ݄
,   ݉௜ ൌ

௜ܯ

כܯ
,     ݊௜ ൌ

௜ܰ

כܰ
,    ߮ଵ ൌ

ߨ
2
െ ߮,  

(5) 

݌ ൌ
ܴܲ

כܰ sin߮
ݍ   , ൌ

ܴܲ
଴݄ߪ

ߤ   , ൌ
כҧܴ݄ߤ
כܰ sin߮

,   ݇ ൌ
כܯ cos߮
ܴ כܰ sin߮

. 

 

     In (5) ݅ ൌ 1, 2;  ݆ ൌ 0,… , ݊. Here ݄כ stands for the thickness of the reference 
shell whereas כܯ and ܰכ denote the yield moment and yield force for the shell 
with thickness ݄כ. 
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     Making use of non-dimensional variables eqn (5) one can present the 
equations of motion as  
 

                                 ሺ݊ߩଵሻᇱ െ ݊ଶ ൌ 0, 
(6) 

݇ሾሺ݉ߩଵሻᇱ െ ݉ଶሿᇱ െ ݊ଶ ൅ ݌൫ߩ െ ߛߤ ሷܹ ൯ ൌ 0, 
 

where primes denote the differentiation with respect to the variable ߩ.  

4 Integrating of the equation of motion 

It is assumed that the stress-strain state of the shell corresponds to the horizontal 
sides ܤܣ and ܣଵܤଵof the yield squares on planes of moments and membrane 
forces, respectively (Fig. 2). Thus in each region ൫ߙ௝, ݆ ௝ାଵ൯ whereߙ ൌ 0,… , ݊ 
one has ݉ଶ ൌ ௝ߛ

ଶ and ݊ଶ ൌ   .௝ߛ
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Yield locus. 

     It is known from the theory of plasticity (see Jones [1]; Chakrabarty [2]; 
Kaliszky [3]) that the vector with strain rate components must be directed 
towards the external normal to the yield surface. Applying the gradientality law 
with respect to the regime ܤܣ one can check if  ଵሶ ൌ 0, ଶሶ ൒ 0. Making use of 
eqn (4) one can state that ܹԢԢሶ ൌ 0, or 
 

 ሶܹ ൌ ଴ሶݓ
ఘିଵ

ఈିଵ
                                                                  (7) 

  

where the boundary requirements 

 ܹሺߙ, ሻݐ ൌ ,ሻݐ଴ሺݓ ܹሺ1, ሻݐ ൌ 0   (8) 

have been taken into account. Here ݓ଴ሺݐሻstands for an unknown function 
depending on time only. Evidently, the requirement ଶሶ ൒ 0 is fulfilled, if 
଴ሶݓ ൒ 0. 
     The flow regime ܣଵܤଵ on the plane of membrane forces is consistent with the 
associated flow law if ߝଵሶ ൌ 0, ଶሶߝ ൒ 0. According to the first requirement one has 
ሶܷ ൌ ܷ Thus, approximately one can take .ݐݏ݊݋ܿ ൌ 0. 
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     According to the regimes ܣଵܤଵ and ܤܣ  
 

݊ଶ ൌ ,௝ߛ   ݉ଶ ൌ ௝ߛ
ଶ,                                                (9) 

 

for ߩ א ൫ߙ௝, ;௝ାଵ൯ߙ  ݆ ൌ 0,… , ݊. Inserting eqn (9) in the first equation in eqn (6) 
one easily obtains after integration 
 

݊ଵ ൌ ௝ߛ ൅
஼ೕ
ఘ
,                                                          (10) 

 

for ߩ א ൫ߙ௝,  ௝ stands for an arbitrary constant. Evidently, atܥ ௝ାଵ൯. In eqn (10)ߙ
the internal edge ݊ଵሺߙሻ must vanish. Thus ܥ଴ ൌ െߛ଴ߙ଴ and  
 

݊ଵ ൌ ଴ߛ െ
ఊబఈబ
ఘ
,                                                          (11) 

 

for ߩ א ሺߙ଴,  ଵሻ. Making use of the continuity of the membrane force ݊ଵ atߙ
ߩ ൌ   ௝ାଵ one can writeߙ
 

௝ାଵܥ ൌ ௝ܥ ൅ ௝ߛ௝ାଵ൫ߙ െ  ௝ାଵ൯,                                              (12)ߛ
 

for each ݆ ൌ 0,… , ݊. Making use of the recurrent relations eqn (12) one obtains 
 

௝ܥ ൌ െߛ଴ߙ଴ ൅ ∑ ௜ିଵߛ௜ሺߙ െ .௜ሻߛ
௝
௜ୀଵ                                               (13) 

 

     Substituting eqn (13) into eqn (10) results in  
 

݊ଵ ൌ ௝ߛ ൅
ଵ

ఘ
ൣെߛ଴ߙ଴ ൅ ∑ ௜ିଵߛ௜ሺߙ െ ௜ሻߛ

௝
௜ୀଵ ൧,                                   (14) 

 

for ߩ א ൫ߙ௝, ;௝ାଵ൯ߙ  ݆ ൌ 0,… , ݊.  
     It follows from eqn (7) that the acceleration can be presented as 
 

ሷܹ ൌ ሷݓ ଴
ఘିଵ

ఈିଵ
,                                                                (15) 

 

for ߩ א ሺߙ, 1ሻ.  
 Substituting eqn (9) and eqn (15) in eqn (6) after integration with respect to ߩ 
one obtains  
 

݇ሾሺ݉ߩଵሻᇱ െ ݉ଶሿ െ ߩଵߛ ൅ ݌
ఘ

ଶ

ଶ
െ

ఓఊೕ௪ሷ బ

ఈିଵ
ቀ
ఘయ

ଷ
െ

ఘమ

ଶ
ቁ ൅ ௝ܤ ൌ 0,     (16) 

 

for ߩ א ൫ߙ௝, ;௝ାଵ൯ߙ  ݆ ൌ 0,… , ݊. Here ܤ௝ stand for arbitrary constants. 
     The integration of eqn (16) immediately gives  
 

ଵ݉ߩൣ݇ െ ௝ߛ
ଶߩ൧ െ ௝ߛ

ఘమ

ଶ
൅ ݌

ఘ

଺

ଷ
െ

ఓఊೕ௪ሷ బ

ఈିଵ
ቀ
ఘర

ଵଶ
െ

ఘయ

଺
ቁ ൅ ߩ௝ܤ ൅ ௝ܣ ൌ 0,     (17) 

 

for  ߩ א ൫ߙ௝, ;௝ାଵ൯ߙ  ݆ ൌ 0,… , ݊.  
     The constants of integration ܣ௝, ௝  ሺ݆ܤ ൌ 0,… , ݊ሻ can be determined making 
use of the continuity of the shear force ݍ and the bending moment ݉ଵ  at 
ߩ ൌ ௝  ሺ݆ߙ ൌ 0,… , ݊ሻ. Moreover, ݉ଵሺߙ଴, ሻݐ ൌ 0, ݉ଵሺ1, ሻݐ ൌ 0, ,଴ߙሺݍ ሻݐ ൌ 0. 
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These conditions enable to define the constants of integration and the 
acceleration ݓሷ ଴.  

5 Determination of deflections 

It appears that the deformation of the shell takes place during two subsequent 
stages. 

1) The first stage 0 ൑ ݐ ൑  ଴ݐ
     During this stage of motion the shell is subjected to the transverse pressure of 
intensity ܲ. The transverse velocity ሶܹ ሺߩ,  ሻ is defined by eqn (7). It is assumedݐ
that the intensity of the loading satisfies the requirement ݌ ൒  ଴ is the݌ ଴ where݌
lower limit of the pressure when plastic deformations take place. According to 
this concept ݓሶ ଴ ؠ 0, if ݌ ൏ ሷݓ ଴.  It can be shown that݌ ଴ ൌ ݐݏ݊݋ܿ ൌ  .଴ߚ
Integrating with respect to time one easily obtains 
 

ሶݓ ଴ ൌ  (18)                                                            ݐ଴ߚ
 

and  
 

଴ݓ ൌ
ఉబ
ଶ
 ଶ,                                                        (19)ݐ

 

where the initial conditions  ݓሶ ଴ሺ0ሻ ൌ 0, ଴ሺ0ሻݓ ൌ 0 have taken into account. 
Thus at the final instant of this stage 
 

଴ሻݐ଴ሺݓ ൌ
ఉబ
ଶ
଴ݐ
ଶ , ሶݓ ଴ሺݐ଴ሻ ൌ  ଴.                                       (20)ݐ଴ߚ

 

2) The second stage ݐ଴ ൑ ݐ ൑  ଵݐ
     At the moment ݐ ൌ  ଴ the external pressure is instantaneously removed andݐ
the subsequent motion takes place due to inertia. Let us denote ݓሷ ଴ ൌ ଵߚ ൌ  ݐݏ݊݋ܿ
for ݐ א ሺݐ଴,   ଵሻ. After algebraic transformations one hasݐ
 

ଵߚ ൌ
ఈିଵ

ଶఓ்
ቄ∑ ሺߛ௜ିଵ െ ௜ߙ௜ሻቀ2ߛ െ ௜ߙ

ଶ ൅ ௜ߛ௜ሺߙ2݇ ൅ ௜ାଵሻߛ െ ሺ2ߙ଴ߛ ൅ ߙ െ௡
௜ୀଵ

଴ሻߛ2݇ ൅ ௡ሺ1ߛ ൅  ௡ሻ൯ቅ,                                                                       (21)ߛ2݇

 
 
where  

ܶ ൌ ௡ߛ ൅ ଴ߙ଴ሺߛ3
ସ െ ଴ߙ2

ଶሻ ൅ 3∑ ሺߛ௜ െ ௜ߙ௜ିଵሻሺߛ
ସ െ ௜ߙ2

ଶሻ.         ௡
௜ୀଵ (22) 

 

     Evidently, the transverse velocity ݓሶ ଴ሺݐሻ and the displacement ݓ଴ሺݐሻ at ݐ ൌ
 ଴. Accounting for the initial conditions eqn (20) for this stage one can writeݐ
 

ሶݓ ଴ ൌ ݐଵሺߚ െ ଴ ሻݐ ൅  ଴.                                                           (23)ݐ଴ߚ
 

     Similarly one obtains 
 

଴ݓ ൌ
ఉభ
ଶ
ሺݐ െ ଴ ሻଶݐ ൅ ݐ଴ሺݐ଴ߚ െ ଴ሻݐ ൅

ఉబ
ଶ
଴ݐ
ଶ,                                                 (24) 

 

for  ݐ א ሺݐ଴,   .ଵሻݐ
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     At the final instant of time ݐ ൌ  ଵ when the motion of the shell ceases theݐ
velocity ݓሶ ଴ሺݐଵሻ must vanish. Thus  
 

ଵݐ ൌ ଴ݐ െ
ఉబ௧బ
ఉభ
 .                                                         (25) 

 

     Let ݓଵ be the maximal residual deflection at the final moment of time. It 
easily follows from eqns (24), (55) that 
 

ଵݓ ൌ
ఉబ௧బ

మ

ଶ
ቀ1 െ

ఉబ
ఉభ
ቁ .                                                 (26) 

 

     Making use of (7) and (26) one can define the distribution of residual 
displacements  
 

ܹሺߩ, ଵሻݐ ൌ ଵݓ
ఘିଵ

ఈିଵ
 .                                              (27) 

6 Discussion 

The results of calculations are presented in Fig. 3 – 7 for ݇ ൌ 0, 2 and ߙ ൌ 0,1.  
     In Fig. 3 the maximal residual deflections are shown versus the load intensity. 
Different curves in Fig. 3 correspond to conical shells with different internal 
radius ܽ଴. The upper curve corresponds to the shell with ܽ଴ ൌ 0,1ܴ whereas the 
lowest one is associated with ܽ଴ ൌ 0,9ܴ. It can be seen from Fig. 3 that the 
smaller the internal radius the larger the maximal residual deflection, as might be 
expected. Here the thickness of the shell wall is constant.  
     Distributions of the bending moment ݉ଵ for the shell of constant thickness 
are presented in Fig.4. Different curves in Fig. 4 correspond to different values 
of the load intensity ݌. The highest curve is obtained for ݌ ൌ 9,4. Calculations 
carried out showed that if ݌ ൐ 9,4 then the solution is not statically admissible. 
 

 

Figure 3: Maximal residual deflections. 
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Figure 4: Radial bending moment. 

     The relationship between the pressure ݌଴ and the internal radius ܽ଴ is 
depicted in Fig. 5 for different values of the ratio ߛ.  The upper curve in Fig. 5 
corresponds to the shell of constant thickness whereas the lower one is 
associated with ߛ ൌ 0,1. It can be seen from Fig. 5 that the quantity ݌଴ is not 
sensitive with respect to ܽ଴ in the case of small values of ߛ.  

 

Figure 5: Threshold of the loading. 

     Maximal residual deflections of stepped shells are presented in Fig. 6. Here 
the ratio ݄ଵ/݄଴  ൌ 1,2. It can be seen from Fig. 6 that when ܽଵ increases (the step 
location moves towards to the supported edge) then maximal residual deflections 
decrease. This is quite natural because in this case the weight of the shell 
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increases. The distributions of the radial bending moment ݉ଵ are depicted in  
Fig. 7 for the case ܽଵ ൌ 0,35. Here the ratio of thicknesses ߛ ൌ 1,2 and different 
curves correspond to different load intensities. 
 

 

Figure 6: Maximal residual deflections of the stepped shell. 

 

Figure 7: Bending moment ݉ଵ. 

     In order that the results can be used with confidence, careful comparison and 
validation with experimental data is needed. However, the experimental database 
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is rather limited in the case of conical shells. In Fig. 8 the limit load of the 
open shell calculated by the current method is compared with the results of Xu et 
al. [9]. It can be seen from Fig. 8 that the results are quite close to each other.  
 

 

Figure 8: Limit loads. 

7 Concluding remarks  

A method of determination of maximal residual deflections of fully plastic 
conical shells was developed. The shells under consideration have piece wise 
constant thickness and are subjected to the rectangular impulse. The material of 
shells is assumed to be a perfectly plastic one and obeys the square yield 
condition and associated flow law. The statical admissibility of the solution is 
assessed numerically.  
     Calculations carried out showed that maximal residual deflections strongly 
depend on the ratio of inner and outer radii of the shell. 
     The solution procedure can be used for approximate evaluation of residual 
deflections of a shell of variable thickness by suitable choice of ௝ܽ and ௝݄  ሺ݆ ൌ
0,… , ݊ሻ. 
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