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Abstract 

Actual military transports (such as ground vehicles or ships) are often not 
acceptable for shock-response testing, for such reasons as cost, vehicle 
availability, personnel availability, or time.  If testing can be conducted on 
scaled-down models, whether of the actual transports or of critical subsections, 
the results might be usable to approximate the shock response of the full-scale 
hardware, provided that appropriate scaling relationships can be developed.  
Since many military vehicles and vessels have large structural portions 
consisting of homogeneous flat plates, these elements serve as a logical starting 
point for shock-response scaling efforts.  This paper develops scaling 
relationships for thin rectangular plates in simple support, subject to transverse 
point-shock loads, under the assumptions of linearity, homogeneity, and 
geometric similarity of the plate faces.  The plates are also assumed to have the 
same respective modal damping ratios, for corresponding modes.  It is found that 
simple scaling factors exist, between corresponding modal frequencies, and 
between corresponding damped modeshapes.  Further, via suitable discretization, 
these factors can be used to provide simple scaling relationships between the 
shock response of points on a scaled-down plate and that of corresponding 
(scaled) points on the scaled-up plate.            
Keywords:  shock response, rectangular plates, modal analysis, model scaling. 
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1 Introduction 

Shock-response testing of actual, full-sized hardware is often impractical or 
impossible, for reasons of cost or availability.  The hardware to be tested may be 
prohibitively expensive, limited in number, unavailable (e.g., in use), 
inaccessible, or even nonexistent (e.g., under development).  And even should 
the hardware—or a suitable full-scale model—be available and released for 
testing, an appropriate test facility may itself be unavailable, nonexistent, or 
excessively time-intensive or expensive to use.  In such cases it may be possible 
to conduct shock tests of scaled-down test models, and to scale up the results to 
approximate the results expected from full-sized models or the actual hardware.   
     The present paper describes how shock-response tests of a scaled-down 
model could be used to approximate anticipated test results of larger hardware, in 
the case of a simply-supported, homogeneous, damped rectangular plate.  The 
larger and smaller plates must be proportional in length and width, but the 
thicknesses need be neither identical nor related by the same proportion.  Both 
plates are assumed to have the same respective modal damping ratios, for 
corresponding modes; and the shock is assumed to be transverse, point-loaded, 
and ideal (Dirac-delta).   Plastic deformation must be local only—restricted to 
the immediate region of the impact, and of negligible effect on remote-point 
vibratory response. 

2 Problem statement 

Referring to fig.’s 1 and 2, consider two flat, simply-supported, homogeneous 
rectangular plates (plate #1: the smaller, or “test” plate; and plate #2, the larger, 
or “full-scale” plate), with identical modal damping ratios for each respective 
pair of modes.  The respective Poisson’s ratios (ν), Young’s moduli of elasticity 
(E), and area densities (ρ) need not be identical.  Assume that numerical shock-
response data is available for the test plate—whether determined experimentally 
or otherwise.  Identify its length, width, and thickness by 1a , 1b , and 1h , 

respectively.  Let the full-scale plate have respective length, width, and thickness 
of 2a , 2b , and 2h , with dimensions related to those of the test plate as follows:   

    111222 hbahba   (1) 

     It is desired to relate mathematically the vibratory shock responses of the two 

plates.  In particular, let the thq  plate  2,1q  have thk  undamped modal 

frequency, thk  damped modal frequency, and thk  modeshape designated, 
respectively, by qkn ,, , qkd ,, , and qkW , .  (The subscripts n and d indicate 

“undamped” and “damped,” respectively.)  Then the first two objectives of this 
paper are as posed below:   

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 113, © 2010 WIT Press

298  Structures Under Shock and Impact XI



 Determine the relationship between undamped modal frequencies 1,,kn  and 

2,,kn .  (The same relationship will obtain between damped modal 

frequencies 1,,kd  and 2,,kd .) 

 Determine the relationship between modeshapes 1,kW  and 2,kW .   
 

 

Figure 1: Plate #1: Thin test plate, with indicated edges in simple support 
(SS). 

 
 

Figure 2: Plate #2: Full-scale plate, with integral scaling as indicated. 
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     Refer now to fig. 3.  Consider the case of the same two plates in free response 
to known initial conditions.  The third objective is as follows: 
 Under the assumption of modal damping, determine the relationship 

between the two plates’ respective free responses  
free1,jw  and  

free2,jw . 
 

 
 

Figure 3: Response point for idealized plate. 

 

Figure 4: Discretized plate, with elements shown. 

     Refer now to fig. 4.  For the same two plates consider the case of an ideal 
(Dirac-delta) impulse (having strength q  for plate q) applied transversely at 

corresponding points qiP ,  on the respective plates, where the respective impact 

points are “proportionally” located.  That is, for 1,iP  located on the test-plate 
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midplane at  1,1, , ii yx  let corresponding point 2,iP , with coordinates  2,2, , ii yx  

on the midplane of the full-scale plate, be located at  1,1, , ii yx  .  Designate the 

respective transverse responses at corresponding points qjP ,  (also on the 

respective midplanes) by  
forced,qjw .  If the two plates are now discretized as 

indicated (fig. 4), a mathematical relationship can be determined between the 
forced responses for the two plates.  This is the final objective of the paper: 
 Determine the relationship between the forced responses  

forced1,jw  and 

 
forced2,jw , for a discretized, lumped-parameter model, with the two plates 

subjected transversely to ideal (Dirac-delta) impulsive point-shock loads of 
known strengths. 

 
 

     The following section summarizes pertinent governing equations of the 
rectangular plates described above.  The subsequent four sections address 
respectively the four objectives given above.  A concluding section summarizes 
the results, indicates some possible applications, and suggests directions for 
future work.    

3 Modal response of a simply-supported rectangular plate 

Consider a flat, linear, homogenous rectangular plate (fig. 1) of length a  ( x -
direction), width b  ( y -direction), uniform thickness h , Young’s modulus E, 

Poisson’s ratio ν, and mass density   per unit area.  The plate is assumed to be 

simply supported around its perimeter.  Assume the plate to be subject to a time-
varying transverse external force intensity (i.e., per unit area of plate surface):  

  tyxqq ,, ,    (2) 

with the x and y axes lying in the undeformed neutral plane.   
     The partial differential equation for the undamped plate is well-known (e.g., 
[1–3]): 
 

  tyxqwDwtt ,,4  ; (3) 

where   tyxww ,,  (4) 

is the transverse (z-direction) displacement of  the neutral surface, the flexural 
rigidity D is defined by 

   23 112/  EhD , (5) 

the subscript notation indicates partial differentiation: 

 22: / twwtt  , (6) 

and  224
:    (7) 
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is the biharmonic differential operator (the dual application of the Laplacian 
operator 2 ).  For rectangular coordinates the Laplacian is expressed by  

 22222 // yx  . (8) 

     The simply supported boundary conditions are represented by  

 0 yyxx www  . (9) 

     An analytical, modal solution to the homogeneous form of the undamped 
differential equation is well known, for this plate geometry and set of boundary 
conditions [1–3].  In particular, 

      









1 1

,,free ,,,
m l

lmlm tyxWtyxw  , (10) 

where the undamped natural frequency for a particular set of values for m and l is 

     222
,, /// blamDlmn   , (11) 

the associated (normalized) modeshape is 

    ,/sin/sin, bylaxmW lm 
 

(12) 

and the corresponding undamped modal coordinate is  

 
 lmlmlm t ,,, sin  

, (13) 

where the phase angles lm,  depend on the initial conditions. 

     If the undamped natural frequencies are arranged in increasing order, then the 
double indices m, l can be replaced with a single index k, and eqns (10) through 
(13) can be rewritten as follows [4]: 

      





1

free ,,,
k

kk tyxWtyxw   (14) 

where the thk undamped natural frequency is 

     222
, /// blamDkn   , (15) 

the associated (normalized) modeshape is  

 
  
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yl
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yxWk
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


































a

m

D
y

a

xm
kn




  (16) 

and the corresponding undamped modal coordinate is  

  kknk t   ,sin . (17) 
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     With modal damping k , the modal coordinate becomes 

  kkn
t

kd te knk    
,, sin, . (18) 

     The modal free response, then, is  

      





1

,free ,,,
k

kdkk tyxWCtyxw  , (19) 

where the constants kC , along with the phase angles k , depend on the initial 

conditions. 

4 Scaled modal frequencies 

From (15), the undamped natural frequencies for the thq  plate are given by   

     222
,, /// qqqqqkn blamD   ; (20) 

where, from eqn (5),    23 112/ qqq q
hED  . (21) 

     In terms of their respective volumetric densities q , the undamped modal 

frequencies for the test- and full-scale-plates are, respectively,   

        2
1

2
1

2
111

2
11,, //112/ blamEhkn    (22) 

and          2
1

2
1

2
222

2
12,, //112/ blamEhkn   .  (23) 

     It follows readily that the undamped natural frequencies are related as 
follows: 

        1,,
2
221

2
112

2
2,, 11/ / knkn EE  








 .  (24) 

     For identical modal damping ratios k , the damped natural frequencies are 

similarly related: 

        1,,2
221

2
112

2
2,, 11/ / kdkd EE  








 .  (25) 

     Defining the frequency gain,  , by 

       2
221

2
112

2
11/ /   EE , (26)  
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     the scaling relationships for the modal frequencies become: 

 1,,2,, knkn   .  (27) 

and 1,,2,, kdkd    (28) 

     Observe that   is constant with modal frequency (i.e., it is invariant with k). 

5 Scaled modeshapes 

From eqn (16), the undamped modeshapes for the test- and full-scale plates are, 
respectively, 

      111, /sin/sin, bylaxmyxWk  , (29) 

and       222, /sin/sin, bylaxmyxWk   (30) 

     Note that eqns (29) and (30) have meaning as physical modeshapes only for 
coordinates describing actual points on the test and full-scale plates, respectively.  
That is, for eqn (29) to be physically meaningful the coordinates must be limited 
to values of x from 0 to 1a ; and of y, from 0 to 1b .  For eqn (30), the coordinates 

must be limited to values of x from 0 to 1a ; and of y, from 0 to 1b .  

(Mathematically, of course, there are no such restrictions.)  The designation 

 yxW ext
k ,1,  will be used in this paper when indicating a domain for  yxWk ,1,  

that extends beyond the test-plate boundaries.  
     2,kW  can be expressed in terms of 1,kW as follows.  Let   first be expressed 

as the ratio of two positive integers, for reasons to be seen shortly: 

  / . (31) 

     Then, substitution from eqn (31) into eqn (1) yields 

  // 12 aa   (32) 

Accordingly,        //sin//sin 12 axmaxm  ; (33) 

equivalently,    12 /sin/sin axmaxm   . (34) 

     Since   and   are positive integers ([5], p. 811),   


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
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    

 



















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


 

2

5

2

5 sincos
5 a

xm

a

xm    (35) 
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  
  

 










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













 





2
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2
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2/1int 

0

sincos
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1
a

xm
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r
rr

r

r  


 (36) 
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  

 
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2/1int 
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

, (37) 

where   xy int  (38) 

represents the largest integer such that  xy   (39) 

Similarly,  
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 
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5 sincos
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xm    (40) 

  
  

 


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
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 (41) 

  
  

 










































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


 






1

2

1
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2/1int 
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a

xm

a

xm
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xm rr

r

r  


. (42) 

     By an analogous development, one can also readily derive the following:    

  // 12 bb  ; (43) 

    12 /sin/sin bxmbxm   ; (44) 
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     Define now the following: 
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    
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. (50) 

     Then eqns (37), (42), (45), and (46) can be written, respectively, as: 

      22 /sin/sin
,

axmxaxm
kx




 , (51) 

      11 /sin/sin
,

axmxaxm
kx




 , (52) 

      22 /sin/sin
,

bylybyl
ky




 , (53) 

and       11 /sin/sin
,

bylybyl
ky




  (54) 

     Since, by eqns (34) and (44), the four expressions in eqns (51) and (52) are 
mutually equivalent,  
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     Similarly, the expressions in eqns (53) and (54) are mutually equivalent, so 
that 

         12 /sin//sin
,,

bylyybyl
kyky




  (56) 

     Substitution from eqns (55) and (56) into eqn (30) leads directly to the desired 
scaling relationship for the modeshapes:  

      yxWyxyxW ext
kkWk ,,, 1,,2,  , (57) 

where the thk  modeshape gain, 
kW,

 , is 

            .,
,,,,,

yxyxyx
kykxkykxkW 

  (58) 

6 Scaled free response 

It is now possible to write a full expression of a scaled free response.  For a test-
plate free response described by 
 

      1,1,,1,
1

1,free,1 sin,,, 1,,
kkd

t
k

k
k teyxWCtyxw knk   




 , (59) 
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the corresponding free response of the full-scale plate is 

       2,1,,1,
1

2,free,2 sin,,,, 1,,

, kkd
text

k
k

k teyxWyxCtyxw knk

kW


   



 ,  (60) 

where the modal gains (scaling factors)   and  yx
kW

,
,

  are as defined by 

eqns (26) and (58), supported by eqns (47) through (50).  The coefficients qkC ,  

and the phase angles qk ,  depend on the initial conditions, as noted previously. 

7 Scaled point response, for discretized plate with point 
loading 

For the test plate, the modal response at point 1,jP  to an ideal impulse of strength 

1  at point 1,iP  is 

    1,1,,
1 1,,

1,,1,,

1,

1
forced1, sin1,,

kkd
t

p

k kd

ikkj

i
j te

vu

m
w knk 


   


 , (61) 

where 1,,kju  is the ( j, k) element of the normalized modeshape matrix 1U  for the 

discretized plate [4], and 1,,ikv  is the (k, i) element of that matrix’s pseudoinverse, 

1U .  (As described in [4], the normalization is accomplished by making each 

discretized modeshape of unit length.)  Similarly, for the full-scale plate, the 
modal response at point 2,jP  to an ideal impulse of strength 2  at point 2,iP  is  

    2,2,,
1 2,,

2,,2,,

2,

2
forced2, sin2,,

kkd
t

p

k kd

ikkj

i
j te

vu

m
w knk 


   


 , (62) 

where 2,,kju  and 2,,ikv  are analogously defined.   

     From eqn (30),  

      222, /sin/sin, bylaxmyxWk   .  (63) 

     Substitution from (1) into (63) leads directly to 

      112, /sin/sin, bylaxmyxWk   , (64) 

so that, applying eqn (29) to eqn (64), 

    yxWyxW kk ,, 1,2,  . (65) 

     (Notice the difference between eqn (57) and the above equation.  The former 
relates the scaled-plate modeshape at any point to the extended modeshape of the 
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test-plate for the same point; the latter equates the scaled-plate modeshape at a 
scaled point to the test-plate modeshape at the corresponding unscaled point.)      
     By using the scaling relationships of eqns (28) and (66), and with 
corresponding points on the two plates proportionally located (as defined in 
section 2), one can now modify eqn (62) to express the modal forced response of 
the full-scale plate in terms of the modal parameters of the test plate.  Key 
substitutions are made as follows: 

 1,,2,, kjkj uu  , (66) 

 1,,2,, kjkj vv  , (67) 

and  12
2

1,2, / ii mm   (68) 

Accordingly,    2,1,,
1 1,,

1,,1,,
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2
forced2, sin1,,

kkd
t

p

k kd

ikkj

i

R
j te

vu

m
w knk 





  













 


 , (69) 

where the parameter R  is a shock-response gain with definition 

    2
2

1 /R  (70) 

Equivalently,        2
112

2
221

2
21 11 //   EER  (71) 

     For proportionally located impact and response points, eqn (60) becomes 

      2,1,,1,
1

2,free,2 sin,,, 1,,
kkd

t
k

k
k teyxWCtyxw knk  

   



 , (72) 

     By limiting the free response to p modes, and summing the respective free 
and forced responses (for the test plate, from eqns (59) and (61); for the full-
scale plate, from eqns (72) and (69)), the total responses of the discretized plates 
can now be expressed.  For the test plate, the total response at point 1,jP  to an 

ideal impulse of strength 1  at point 1,iP  is: 

      tyxwtyxwtyxw jjjjjj ,,,,,, 1,1,forced,11,1,free,11,1,1   (73) 
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kkd
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p

k
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
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          1,1,,
1

1,,1,,1,,1,1 sin// 1,,
kkd

t
p

k
kdikkji tevum knk    


  (74) 

        1,1,,
1

1,,1,,1,,1,11,1,1,1, sin//, 1,,
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t
p

k
kdikkjijjkk tevumyxWC knk    


 . (75) 
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     Similarly, for the full-scale plate, the total response at point 2,jP , located at  

 1,2,1,2, , jjjj yyxx    to an ideal impulse of strength 2  at point 2,iP , 

located at  1,2,1,2, , iiii yyxx    is: 

      tyxwtyxwtyxw jjjjjj ,,,,,, 2,2,forced,22,2,free,22,2,2   (76) 
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kkd

t
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k
k teyxWC knk   



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
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
 . (78) 

     In terms of test-plate parameters, the total response of the full-scale plate is: 

      tyxwtyxwtyxw jjjjjj ,,,,,, 2,2,forced,22,2,free,22,2,2   (79) 
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k
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
 . (80) 

     Upon collecting terms, one obtains 

   
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     For the common case of zero initial conditions, eqns (75) and (81) reduce, 
respectively, to:  

      



p

k
kdikkjijj vumtyxw

1
1,,1,,1,,1,11,1,1 //,,   te kd

tknk
1,,sin1,,   (82) 

 

and       



p

k
kdikkjiRjj vumtyxw

1
1,,1,,1,,1,22,2,2 //,,   te kd

tknk
1,,sin1,, 

   . (83) 

     The frequency gain   (eqn (26)) and the shock-response gain R  (eqns (70) 

and (71)) are known functions of plate geometric and material parameters. 
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8 Initial verification of scaling equations 

In order to verify frequency-gain equation (26) two linear finite-element models 
were developed, one scaled geometrically relative to the other; otherwise the two 
plates are identical.  Each model describes an isotropic, homogeneous, aluminum 
test-plate.  For each the plate material is 6061-T6 aluminum, with Young’s 
modulus 69 GPa, mass density 2700 kg/m3, Poisson’s ratio 0.33, and modal 
damping ratio 0.02 (all modes).  The unscaled plate is simply supported along 
each of its four edges, with dimensions 1.0 m x 0.75 m x 25 mm; the scaled plate 
is twice as long, twice as wide, and one-and-a-half times as thick.  (I.e., 
   5.1,2,  —refer to eqn (1)).  Each FEA model comprises uniform 

rectangular (parallelepiped) elements: 50 element divisions along the length (x-
direction, measured in the neutral plane from the lower left corner), and 38 along 
the width (y-direction, measured correspondingly).  The modal frequencies 
determined by FEA were found to scale according to the analytical frequency 
gain  determined above, eqn (26)—for detailed results, see table 1.  The 

shock-response gain, R  (eqns (70) and (71)), remains to be verified. 

Table 1:  Comparison of frequency scaling between FEA and analytical 
models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

9 Application 

In order to use these results one could first determine analytically the damped 
and undamped modal frequencies, the modeshapes, and the lumped masses for 
the discretized test plate, via the procedure of [4].  Next, one could determine  
the frequency- and shock-response gains, via the definitions found above in eqn 

Original Scaled by ANSYS     Scaled analytically          Difference (%)

168.61                   63.235        63.228                         0.01150
350.65                   131.52                       131.50    0.02254
492.28                   184.64                       184.60    0.02071
654.03                   245.34                       245.26    0.03094
674.12                   252.91                       252.80    0.04574
977.17                   366.69                       366.44    0.06959
1031.6                   386.98                       386.85    0.03180
1078.7                   404.67                       404.51    0.03916
1213.1                   455.21                       454.92    0.06377
1401.4                   525.98                       525.51    0.08917
1515.6                   568.94                       568.36    0.10202
1624.6                   609.51                       609.21    0.04821
1786.4                   670.22                       669.91    0.04610
1939.1                   728.15                       727.15    0.13825
1946.6                   730.76                       729.99    0.10576
1967.5                   738.41                       737.81    0.08125
2269.3                   852.07                       850.97    0.12876
2291.6                   859.85                       859.35    0.05833
2483.4                   932.84                       931.26    0.16991
2612.9                   981.04                       979.85    0.12081

Modal Frequencies (Hz) Comparison: First 20 Modes
scaled by alpha = 2, beta = 1.5
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(26) and either eqn (70) or eqn (71).  One could then use eqn (83) to evaluate the 
shock response at the desired response point for a scaled plate (whether scaled up 
or down); no finite element analysis would be required—nor would any 
experimental testing, except as needed for verification. 

10 Conclusion 

This paper has developed equations by which the shock response of one simply-
supported rectangular plate can be related to that of a scaled plate also under 
simple support, when the scaling is such that the faces of the two plates are 
geometrically similar.  The plates are assumed to be linear; and the shock, to be 
ideal (Dirac-delta) transverse point-shock loading.  The shock impulses may be 
of different strengths; and the plates may have different Young’s moduli, 
Poisson’s ratios, and volumetric densities.  Modal damping is assumed, with 
identical damping ratios for corresponding modes.  The analysis led to analytical 
expressions for the modal-frequency-, modeshape-, and shock-response gains.  
     Future work includes verifying further the above scaling relationships, finding 
corresponding relationships for plates with different boundary conditions, and 
determining situations in which these simple assumptions and geometries could 
be useful for real equipment and more realistic shock scenarios.  Verifying these 
relationships could begin with finite-element analysis, but determining the 
degree of applicability to real equipment will likely require shock tests to 
physical hardware.      
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