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Abstract 

In various structures arches of a circular shape are exposed to impact loading. 
Such structures involve the linings of tunnels of different kinds, cockpits of 
aircrafts, parts of submersibles, etc. The problem is solved as pseudo           
three-dimensional, i.e. generalized plane strain is considered after introducing the 
development of time and hoop direction to the Fourier series. This assumption is 
in very good compliance with the natural behavior of the above mentioned 
structures and moreover, it enables us to describe mathematically several 
phenomena such as dissipation layers inside the arches, optimal distribution of 
reinforcement, and so on. In the radial direction the linear finite element like 
approach is introduced. The reason for this is the fact that the layers are 
considered thin enough and the explicit solution leads us to Bessel functions, 
which are not transparent enough. The base functions in the hoop direction are 
selected for simply supported arches, but the generalization of the prescribed 
supports is possible using the application of auspicious moments (rotations) at 
the end lines.  
Keywords: circular laminated arches, semianalytical method, dumper layer, 
impact load. 

1 Introduction 

In this paper the vibration of laminated cylindrical arches subject to excitation 
loading is solved in the generalized plane strain state. The application can be 
seen in a wide scale of applications, such as in the fields of the assessment of 
elements of submersibles, airplanes, underground structures and others.  
     First the Hamiltonian is formulated in the cylindrical coordinates and the 
equations of equilibrium are then derived. By introducing series in the hoop 
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direction and developing harmonic sine approximate loading in time and coming 
back to the energy formulation using test functions yields the Hamiltonian 
formulation for finite elements in the remaining coordinates (radial and axial 
directions).  
     Similar problem are solved in plenty of papers. To shorten the list we name 
only some. The vibration analysis of cylindrical shells using the wave 
propagation method is presented in [1]. An exact solution of free harmonic wave 
propagation in a composite laminated cylindrical shell is presented in [2], within 
the framework of the theory of three-dimensional cylindrically anisotropic 
elasticity. The paper [3] deals with the radial vibration of a row of cylindrical 
panels of infinite length using the concept of wave propagation in periodic 
structures.  
     Based on the Flugge thin shell theory, the paper [4] presents exact solutions 
for the vibration of circular cylindrical shells with step-wise thickness variations 
in the axial direction. A new method for calculating the free vibration 
frequencies of a thin circular cylindrical shell are presented in [5], based on 
Flugge’s shell theory equations for orthotropic materials. 

2 Hamilton’s principle 

Let us consider a laminated arch, which in an undeformed state is described by 
the volume Ω  with boundary Γ  being equipped with the cylindrical coordinate 
system zrθ0 , see Fig. 1. The Hamiltonian variational principle applied to the 
laminated arch starts with formulation of the following potential energy 
functional: 
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where transformed components to the cylindrical system provide denotation of 
stresses as zrzrzr θθθ σσσσσσ ,,,,, , components of the transformed strain tensor 
are denoted as zrzrzr θθθ εεεεεε ,,,,, , and zr uuu ,, θ  are the displacements in the 
curvilinear coordinates and the external work of tractions rp in the radial 
direction are considered for the purpose of our problem, ρ  is the mass density, t  
is the time. The quantities zr XXX ,, θ  are components of the volume weight 
forces.  
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     Hamilton’s principle states that the Hamiltonian (1) is minimum, i.e., the first 
variation of (1) is equal to zero. The variations of free variables, i.e. 
displacements in the basic three directions are known as test functions. Using 
Green’s theorem, and considering the test functions to be arbitrary, the equations 
of equilibrium are formulated as: 
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Figure 1: Geometry and denotation of quantities in laminas of an arch. 

     Assuming the solution in the form: 
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     We express iα  as mii .=α , where positive integer i is the number of a wave 

in the Fourier series in the circumferential (hoop) direction and m = 
β
π . 

Angle β identifies the end points of the arch. The kinematical equations become: 
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     Hence, from Hooke’s law one gets: 
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      Because the displacements have developed in the hoop direction we get: 
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     In the following text we fully utilize the above relations in formulation of the 
problem in one lamina for fixed i and j. Because of these assumptions we drop 
out the indices in the expressions to simplify the formulas.  

3 Solution in one lamina with fixed time and hoop waves 

Let kΩ be the cross section of lamina k (which is the index between 1 and N 
being the number of laminas) with a boundary (outer, inner, or interfacial) kΓ . 
Equations (5) and (6) can now be substituted to (2). Comparing both sides of the 
resulting equations, and neglecting the volume weight, leads us formally to the 
same equations as (2) which now are valid in kΩ . 
     Multiplying the first equation (2) by aφ and integrating the result over the 
area of the layer k, then again multiplying the first equation by bφ and integrating 
in the same way yields: 
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          Applying Green’s theorem to the first term of the left hand side of (9) 
gives: 
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     From this relation boundary conditions follow on kΓ , which have to be 
precised to also involve the waves  
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where ij
rp  are amplitudes of tractions in the radial direction on kΓ . Moreover, 

the outward unit normal is defined by its components },,{ zr nnn θ=n . In the next 
step we introduce approximations in the sense of general plane strain 
( const.=ij

zε  for each i and j ): 

b
r

a
rr u

h
aru

h
rbu −

+
−

=  ,      ba u
h

aru
h

rbu θθθ
−

+
−

=   ,   zu zz ε=  

h
rb

a
−

=φ ,   ,
h

ar
b

−
=φ     abh −=       (12) 

 
where ),( bar∈ , a and b are respectively inner and outer radii of the lamina k, h 

is the thickness of the lamina, b
r

a
r uu ,  are the inner and outer radial 

displacements, ba uu θθ ,  are inner and outer displacements in the hoop direction 

and ba φφ ,  are the test functions.  The displacements b
r

a
r uu , ba uu θθ ,  and zε  are 

the free parameters to be solved for each i and j . Note that in the case of one 
lamina and one wave the kinematical equations (4) simplify as: 
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     Applying a similar approach to the second and the third equations (2) 
delivers boundary conditions, which are for completeness written again in terms 
involving the time and hoop waves:  
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ij
z

ij pp ,θ   are respectively amplitudes of tractions in the hoop and axial directions, 

L
z

z =φ is the fifth base function being connected with the axial displacement, 

and L is the length of the arch. 
     The above approach produces a variational formulation for the second 
equation: 
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     The third equation will be multiplied by zφ , integrated over kΩ and Green’s 
theorem will be applied to the first term of the left hand side to get: 
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     In the sense of our approximation the second and the third terms of the left 
hand side disappear, which results in easy relation in kΩ : 
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     The average value of the stress components over the thickness of the layer are 
defined as: 
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     Moreover, we define the boundaries of the layer: 
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where θσσ rarra qp == , @ ar = , θσσ rbrrb qp == , @ br =  and we write the 
force-displacement relation for the single layer under the boundary conditions as: 
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where the coefficients of K  are evaluated from (10), (16) and (18) and M is the 
mass matrix. 
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4 Entire structure 

In order to get relations in the entire structure, interfacial and boundary 
conditions have to be applied. The boundary conditions have to obey either 
prescribed displacements in the radial, magnitudes in hoop or/and axial 
directions. The other possibility is to prescribe tractions p, which are connected 
with stresses according to such formulas: 

θσσ rarra qp == , @ inner boundary and θσσ rbrrb qp == , @ outer boundary 

zz Pp = @ the face Lz =  

     On the interfaces between layers we apply interfacial conditions of the 
following kind: the displacements are continuous and the tractions are in 
equilibrium and the relations (21) are used. 
     Generally we get N x M systems of equations for each wave Ni ,...,1=  in the 
hoop direction times each wave Mj ,...,1=  in the time scale. For eigenvalues of 
frequencies (natural frequencies) put 1=j and select successively Ni ,...,1= . 
Eventually we arrive at the overall system of equations for solving either 
eigenfrequencies or reaction on the external excitation, which has to be 
developed into sine serious in time. This can formally be recorded as: 

}{}]{)...()()...[( 21221 puMMMKKK =⊕⊕⊕−⊕⊕⊕ NN jω  (22) 
where ⊕  is a symbol for generalized addition in the sense of finite elements, 

}{u is the vector of displacements and tractions }{p  in zr ,,θ directions. 

5 Example 

In order to suppress an impact of explosive load on the outer boundary (the inner 
boundary is free of load) a dumper is positioned in various layers. In connection 
with the position inside the laminated arch, different natural frequencies are 
attained. In this way the vector }{p in (22) disappears, 2or    ,1 == jj  and the 
eigenvalue problems are to be solved from (22). 
     The arch has the following dimensions and material properties: l = 1 m, r = 2 
m, t = 5 mm, β  = 0.5 rad, E = 208 × 109 N/m2, ρ  = 7833 kg/m3, ν  = 0.29. 
     Five equidistant layers are considered through the thickness of the arch. The 
dumper positioned in only one layer with E = 200 × 108 N/m2 will move for 
successive examples from the layer one to five. The natural frequencies are 
calculated for these particular cases. They are displayed in Fig. 2. Number one 
belongs to the position of the dumper in layer one, etc., the numbering is from 
the outer boundary to the lower one. 

6 Conclusions 

In this paper the procedure for calculating a laminated arch is suggested in 
cylindrical coordinates zrθ0 , starting with the assumption of generalized plain  
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Figure 2: Natural frequencies for various positions of the dumper. 

strain. Before introducing this assumption, the displacements are developed into 
Fourier’s series in the time and hoop coordinates. Employing kinematical 
equations in cylindrical coordinates and Hooke’s law, the stresses are derived in 
the split formulation, from which the radial and axial coordinates on one side and 
the time and hoop coordinates on the other side are separated. After this, 
variational formulation follows and a finite element-like procedure is employed 
in the coordinate system rz0 . In the radial direction linear approximation of 
displacements is supposed and in the sense of the generalized plane strain linear 
distribution of displacements in the axial direction is also introduced. A simply 
supported segment is considered in our case, but more general supports can be 
involved using given moments at the end points, the clamped edge can be 
simulated, for example.  
     As an example of the application of the above described approach a dumping 
layer for the dissipation of energy after the application of an explosive load is 
considered in various laminates. Two first natural (eigen) frequencies are 
observed dependent on the position in the structure of the arch. It appears that the 
most promising case is that which is defined by positioning the dumper towards 
the outer boundary.  
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