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Abstract 

Analytical solutions for the deformation response of a composite sandwich panel 
subjected to high velocity impact by a rigid blunt, cylindrical projectile are 
presented. The solution is derived from a two degrees-of-freedom model for the 
sandwich panel involving local indentation, core crushing and global 
bending/shear deformations. An example is given for a composite sandwich 
panel consisting of orthotropic E-glass vinyl ester facesheets and PVC H100 
foam core and subjected to the high velocity impact of a blunt cylindrical 
projectile. The analytical solution for the local indentation and global deflection 
under the projectile was found to be within 15% of FEA results. 
Keywords: high velocity impact, composite sandwich panels, analytical model. 

1 Introduction 

Light weight composite sandwich panels are becoming more widely used in 
military transport vehicles because they offer greater load bearing capabilities 
per unit weight and easier maintenance. In some instances, these composite 
sandwich panels may be subjected to high velocity impact from flying debris 
from a nearby explosion. While there has been much research on the low 
velocity impact of composite sandwich panels, very few papers deal with the 
issue of the high velocity impact of composite sandwich panels [1,2]. The 
objective of this paper is to develop an analytical model for the deformation 
response of a composite sandwich panel subjected to high velocity impact by a 
rigid blunt, cylindrical projectile. Only the mechanical constitutive equations for 
the facesheet and core are considered in this paper because the thermo-
mechanical equations of state for them are presently unknown. 
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2 Problem formulation 

Consider the composite sandwich panel, as shown in Fig. 1. The facesheets are 
orthotropic plates of thickness h, and the core is crushable polymeric foam of 
thickness H. The blunt cylindrical projectile has a radius rp, a mass Mo and a 
velocity Vo. The projectile is assumed rigid compared to the sandwich panel.  
During impact, the panel experiences local indentation as well as global 
bending/shear deformation.   
     Upon impact, compressive stress waves are generated under the projectile.  
These stress waves must travel through the incident facesheet, core and distal 
facesheet before global transverse shear and bending waves can be transmitted 
laterally in the sandwich panel.  During this phase, the problem becomes one of 
local indentation, i.e., the incident facesheet deflects under the projectile and the 
core crushes.  Once the through-thickness compressive stress waves have 
reached the distal side of the sandwich panel, a global panel bending/shear 
deformation will initiate.  Analytical solutions for the local and local/global 
transient response of the panel will be given in the following section.   
 
 
 
 
 
 
 
 
 
 

Figure 1: Projectile impact of the composite sandwich panel. 

3 Phase I: local indentation 

The sandwich undergoes only local indentation during Phase I. As depicted in 
Fig. 2, the problem is reduced to one involving projectile impact of a facesheet 
 
 
 
 

Figure 2: Local indentation and extent of the damage. 
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resting on a foam foundation.  Local indentation under the projectile is denoted 
δ and the lateral extent of deformation is denoted ξ .  The duration of Phase I is 
determined from the wave travel time through the thickness of the panel. 

3.1 Through-thickness wave propagation 

Compressive stress waves must pass through the full thickness of the sandwich, 
i.e., two facesheets and core, before any response can be characterized as global 
bending/shear deformation.  The through-thickness wave travel time is given by 

cf
I C

H
C

ht +=
2       (1) 

where fC and cC are the wave speeds in the facesheet and core, respectively. 
The wave speed in an orthotropic plate in plane strain is given by 
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where ,ijE ijν  and fρ are the elastic modulus, Poisson’s ratio and density of the 
orthotropic facehseet, respectively.  The wave speed in the foam is determined 
by the amount of core crushing.   
 

 
 
 
 
 
 
 
 
 
 

Figure 3: Compressive stress-strain curve of the polymeric foam. 

     A polymeric foam core is elastic-plastic with a compressive stress-strain 
characteristic as shown in Fig. 3 [3].  The foam is linear elastic with a 
compressive modulus of cE  until yielding at a flow stress, .q  Rapid compaction 
of cells causes the density to change during the plateau region until full 
densification has occurred at .Dε  The stress rises to a maximum plastic stress, 

,pσ  at the densification strain.   Both elastic and plastic waves could therefore 
be generated in the foam.  The elastic wave speed in the foam is given 
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by cce EC ρ= and the plastic wave speed is given by
Dc

p
p

q
C

ερ
σ −

= [4], 

where pσ is the stress in the densification region.  The elastic wave speed is 

generally faster than the plastic wave speed so that ec CC = for the through-
thickness wave travel time in Eq. (1). 

3.2 Local indentation 

Local indentation is found by considering the projectile presses onto the incident 
facesheet resting on a rigid-plastic foundation.  A single degree-of-freedom 
equation of motion governing the dynamics of the projectile and effective 
facesheet mass can be written considering the system Lagrangian.  The 
Lagrangian L for a system is defined as ,Π−= TL where T and Π are the 
kinetic energy and potential energy of the system, respectively. 

3.2.1 Kinetic energy 
Assume the mass of the core is small compared to the mass of the facesheet.  
Then the kinetic energy of the system is given by 

2
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2
1 2

1
2
1 VmVMT fo +=      (3) 

where 1V is the velocity under the projectile at any time and fm is the effective 
mass of the facesheet.  The effective mass of the facesheet is found by assuming 
that the projectile induces the following linear velocity field in the facesheet:   
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     Note that ξ  in the above equation varies with time, i.e., the velocity field has 
a moving boundary and the effective facesheet mass grows as the velocity field 
spreads away from the impact site.  Integrating the distributed kinetic energy of 
the facesheet and setting it equal to the equivalent kinetic energy produced by an 
effective facesheet mass, ,fm gives: 

( )( )pp
f

fpf rr
h

hrm −++= ξξ
πρ

ρπ 3
6

2         (5) 

3.2.2 Potential energy  
The total potential energy of the system, ,∏ consists of the elastic strain energy 
of the facesheet, ,lU  and the work dissipated in crushing the core, D: 

DU l +=∏          (6) 
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     Assuming in-plane deformations are negligibly small compared to transverse 
deflections, w, the elastic strain energy due to bending in an orthotropic 
facesheet is  

dS
yx

wD
y
wD

y
w

x
wD

x
wDU

S
l 


















∂∂
∂

+










∂
∂

+
∂
∂

∂
∂

+


















∂
∂

= ∫
22

66

2

2

2

222

2

2

2

12

2

2

2

11 42
2
1        (7) 

where ijD is the bending stiffness of the facesheet and S is the area associated 
with indentation.  
     The work dissipated in foam core crushing is given by 

∫=
S

qwdSD             (8) 

where q is the constant, compressive flow stress in the foam.   
     Finite element analysis has shown that the transverse deflection of the 
facesheet may be assumed as follows: 
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where .222 yxr +=  Transforming derivatives from rectangular to polar 
coordinates, allows one to calculate the strain energy due to facesheet bending as 
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where ( ) 661222111 423 DDDDC +++= and .46 661222112 DDDDC −++=  
     The work dissipated in foam core crushing is also given by 
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3.2.3 Equation of motion 
Lagrange’s equation of motion for the projectile and effective facesheet mass is  
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where 
dt
dV δ

=1 .  Substituting fm  and Π  into Eq. (12) gives   
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where it is assumed that ./ tξξ =  Conservation of linear momentum relates the 
projectile and effective facesheet mass velocity, ,1V  with ξ : 

( )( ) 1
2

1 2
3

Vrr
h

hrVMVM pp
f

fpooo











−+++= ξξ

πρ
ρπ    (14) 

     Equation (13) becomes a nonlinear second order differential equation in 
δ when Eq. (14) is used to eliminateξ .  The initial conditions for Eq. (13) 

are ( ) 00 =δ and ( ) ( ).)0(0
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4 Phase I: global bending/shear 

At the end of Phase I, transverse shear waves propagate from the point of impact 
across the sandwich panel.  The global panel deflection is denoted ∆ and the 
lateral extent of global deformation is denoted Ξ  as shown in Fig. 4.   
 

 
 
 

 
 

Figure 4: Global deformation and extent of the damage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Coupled local and global deformation model. 
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     The two degree-of-freedom model shown in Fig. 5 is considered for 
combined local indentation and global panel bending/shear deformations.  
Degrees of freedom, 1X and ,2X are related to the position of the projectile and 
incident facesheet, and the deflection of the sandwich panel under the projectile 
if there were no local indentation or core crushing, respectively.  Therefore, 

21 XX −=δ  and .2X=∆  Applying Lagrange’s equations of motion results in 
two equations of motion: 
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where 
dt

dX
V 2

2 = .   

4.1 Kinetic energy 

Assume the mass of the core is small compared to the mass of the 
facesheet and neglect rotary inertia of the sandwich panel.  Then the 
kinetic energy of the system is given by 
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where sm is the effective mass of the sandwich and 2V  is the velocity of the 
sandwich under the projectile.  The effective mass of the sandwich is calculated 
by again assuming a linear velocity field for the sandwich:   
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     From the above velocity field, one finds that the effective sandwich mass is 
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     Note that only one facesheet mass is in Eq. (19) because an effective mass of 
the incident facesheet has already been considered.   

4.2 Global bending/shear energy 

The elastic strain energy due to bending and shear of a symmetric sandwich 
panel with orthotropic facesheet is  
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where w is again used to express transverse deflections,α and β are shear angles 

associated with the x- and y-directions, respectively, s
ijD is the sandwich bending 

stiffness matrix, and sA44  and sA55  are the transverse shear stiffnesses. The 
superscript “s” is used to denote the sandwich.  
     Assume the following global transverse deflection and shear rotations: 

( )









Ξ≥

Ξ≤≤




















Ξ

−∆
=

r

rr
rw

,0

0,1
22

     (21) 

and  

( ) ( ) ( )







Ξ≥

Ξ≤≤−Ξ
Ξ==

r

rr
r

rr
,0

0,
4α

2
o

βα                 (22) 

where∆  is the global deflection under the projectile and oα is the shear rotation 
at the center of the panel.  
     Substituting derivatives of the expressions in Eqs. (21) and (22) into  
     Eq. (20) gives the following expression for the strain energy: 

( ) ( )[ ]
( )( )222

5544

2
66122211

3528176
105

1

224
3
4

Ξ∆+Ξ+∆Ξ−+

+++++=

παπα

αππ

oo
ss

o
ssss

g

AA

DDDDU
       (23) 

4.3 Equations of motion 

Satisfying Lagrange’s equations stated in Eqs. (15) and (16) one gets 
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where it is assumed that ./ tΞ=Ξ  Requiring that 0=
∂
Π∂

oα
gives 
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     Conservation of linear momentum also gives  
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     Finally, the kinetic energy of the sandwich with both facesheets is compared 
to the sum of the kinetic energy of the facesheet and the sandwich with only the 
distal facesheet: 
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     Equations (24) - (28) are solved with the following initial conditions: 
( ) ,101 XtX I = ( ) ,101 XtX I = ( ) ,02 =ItX and ( ) ,02 =ItX where It is defined in 

Eq. (1) and 10X and 10X are taken at the end of Phase I. 

5 An example 

As an example, consider a fully clamped sandwich panel made of E-glass vinyl 
ester facesheets and PVC H100 foam core, with a panel radius of 250 mm, 
facesheet thickness of 2 mm, and core thickness of 25 mm.  Material properties 
for the E-glass vinyl ester and the PVC H100 foam are given in Table 1.  
     Let the sandwich panel undergo impact by a rigid cylindrical rod of radius 2.5 
mm, mass 0.5 kg, and velocity 40 m/s.  This impact problem was modeled using 
ABAQUS Explicit using continuum C3D8R elements for both the facesheets and 
the foam.  The PVC H100 foam was modeled as crushable foam with volumetric 
hardening.  Additional foam properties, such as the plastic hardening curve were 
taken from [5]. 
     The analytical solution for the incident facesheet under the projectile and 
global panel deflections is compared to FEA results in Fig. 6.  The deflection of 
the distal facesheet under the projectile was taken as the global panel deflection 
in FEA.  The analytical deflections are about 15% lower than FEA predictions.   
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Table 1:  Facesheet and foam material properties. 
 
 

 

Figure 6: Transient deflections of incident and distal facesheets under the 
projectile. 

6 Conclusions 

A two degree-of-freedom model was developed and used to obtain the local 
indentation and global deformation response of a sandwich panel made with E-
glass vinyl ester facesheets and PVC H100 foam core and subjected to high 

 E-Glass/Vinyl Ester      Divinycell H100 
Density (kg/m3)           1391.3 100 
Thickness (mm) 2 25 
E11 (+) (GPa)                17 0.126 
E22 (+) (GPa)                17 0.126 
E33 (+) (GPa)               8.5 0.126 
E11 (-) (GPa)                 17 0.035 
E22 (-) (GPa)                 17 0.035 
E33 (-) (GPa)                8.5 0.035 
ν12                                                  0.13 0 
ν13                                                 0.28 0 
ν23                                                 0.28 0 
G12=G21 (GPa)             4.0  0.0175 
G23=G32 (GPa)             4.2 0.0175 
G13=G31 (GPa)             4.2 0.0175 
 q (MPa)                       -- 1.66 
 εD                    -- 0.8 
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velocity impact by a rigid blunt, cylindrical projectile.  The analytical solution 
for the local indentation and global deflection under the projectile was found to 
be 15% lower than FEA results. 
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