
A high precision spectrum rectifying technique 

J. Zhou1 & Y. Zhong2, 3 
1School of Civil Engineering & Architecture,  
Chongqing Jiaotong University, China 
2School of Computer & Information, Chongqing Jiaotong University, 
China 
3Postdoctoral station, Chongqing University, China 

Abstract 

Spectrum-analysis technology has been widely used in engineering. Round 
discrete spectrum or FFT spectrum of a signal can be obtained rapidly by the 
FFT method. In practical applications, these FFT spectrums always need to be 
rectified in order to obtain a better spectrum. A high precision spectrum 
rectifying technique, a deconvolution-based spectrum rectifying technique, is 
developed in this paper. The sampled signal is firstly multiplied by an adaptive 
window function, the zooming spectrum of discrete windowed signal is then 
calculated, and finally the spectrum of window function is eliminated from the 
zooming spectrum by deconvolution so that the rectified spectrum of the 
analyzed signal can be obtained. Experiments show that this rectifying technique 
is very effective.  
Keywords: spectrum rectifying technique, deconvolution, window function, 
sidepetal error. 

1 Introduction 

Frequency spectrum analysis technology has many applications in engineering 
[1]. FFT is frequently used to obtain signal spectrum rapidly. But the FFT 
spectrum with low resolution and sidepetal error caused by truncation is too 
rough to satisfy engineering demands. It induces the study on spectrum 
rectifying started from 1970s of the 20th century and many achievements have 
been made [2-4]. One of which is window function spectrum rectifying 
technique that decreases the sidepetal error by selecting a narrow-band window 
function. However, so far the rectified spectrum generated by this method is still 
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mixed with the spectrum of window function. In this paper a deconvolution-
based spectrum rectifying technique is developed. It uses deconvolution 
technique adopted in recent years [5] to eliminate the spectrum of window 
function from the rectified spectrum so as to obtaining better rectified spectrum. 
Where the rectified spectrum is obtained by window function spectrum 
rectifying technique. 

2 Basics of the deconvolution-based spectrum rectifying 
technique 

Spectrum rectifying usually aims at two targets: improving frequency resolution 
and decreasing sidepetal error. In FFT, the frequency resolution 1f  of discrete 
spectrum is decided by the length T  of a truncated signal, i.e. Tf /11 = . It 
seems that the frequency resolution won’t be improved once T  has been 
determined. Nonetheless, only FFT algorithm restricts the frequency resolution 
to be Tf /11 = . When sampling formula is satisfied, a discrete signal may 
represent a continuous signal. Therefore the spectrum of the discrete signal is 
also continuous and its frequency resolution may be arbitrary It is just the reason 
why the spectrum of discrete signal can be zoomed. 

Following the literature [6], the continuous spectrum of the sampled signal 
)( snTx    )12/,,2,1,0,1,,2/( −−−= NNn  can be calculated as 
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Therefore the zooming spectrum of signal with any time can be obtained from 
eqn. (1). 

While when using eqn. (1), the result will be mixed sidepetal error since it 
truncates the analyzed signal, eg. adding a rectangular window on the analyzed 
signal. Let the analyzed signal be )(tx , the rectangular window function be 

)(tw , and the truncated signal be )(tx , then we have 

                                      )()()( twtxtx =                                             (2) 

and              

           )()()( fWfXfX ∗= ,                                     (3) 

where )( fX  is the spectrum of )(tx , )( fX  is the spectrum of )(tx  and 
)(W f  is the spectrum of )(tw .  

According to eqn. (3), the spectrum )( fX  can be obtained by deconvolving 
to eliminate the spectrum )( fW  from )( fX . 
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3 Algorithm of the deconvolution-based spectrum rectifying 
technique 

Since only discrete signal can be adopted in computer, let 
)()()( fXjfXfX ir += , )()()( fjXfXfX ir +=  and )()()( fjWfWfW ir += , 

then we can obtain from eqn. (3)  
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When frequency f  and u  are sampled with interval 0f , we obtain 
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which can be simply denoted as 
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When 2/Mn −<  or 2/Mn ≥ ， 0)(,0)( == nXnX ir , we have 
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The equations can be expressed in matrix form as: 
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In fact, the rectangular window function )(tw  in eqn. (3) can be replaced by 
any window function )(tr . Let )()()( fjXfXfR ir +=  be the spectrum of 

)(tr , then eqn. (12) and eqn. (13) become  
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).12/,,2,1,-1,0,1,2/M2,/M,( −+−−= Mnk  
1×M

rX  and 1×M
iX  can be obtained by eqn. (14) and eqn. (15) in computer, so 

)n()n()n( 000 fjXfXfX ir +=  )2/n2/( MM <≤− , the rectifying spectrum 

of )(tx  with resolution 0f , can be obtained in computer. 

If a proper window function is selected to make ,0R ≡×MM
i  then eqn. (14) 

and eqn. (15) will be simplified as   
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So 1×M
rX  and 1×M

iX  can be expressed as 
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As a result, less calculation is needed to execute the algorithm. 
      Since both Gauss signal  

                                                    ( )2/)( τtetc −=                                            (20) 

and its spectrum  

                                                ( )2)( τπτπ fefC −=                                      (21) 

are real and symmetric, and especially they both have a scale factor τ  which 
make its width adjustable, Gauss signal is a proper window function to rectify 
FFT spectrum with deconvolution.    

In the deconvolution-based spectrum rectifying technique, the purpose to 
process signal with a proper window function is to make the boundary of the 
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analyzed signal trend to be zero so as to decreasing the sidepetal error. If the 
window function is too narrow, the analyzed signal will be truncated and the 
information of the analyzed signal will lost. Inversely, if the window function is 
too wide, the boundary of the one doesn’t trend to be zero and undesirable 
sidepetal error will not be eliminated

(X

. In order to select window function 
effectively in deconvolution-based spectrum rectifying technique, a method to 
determine the scale factor τ  of Gauss window function is adopted in this paper, 
i.e., set ( )ετ ln2/ −= T  if )(tc  is recognized as zero when ε≤)(tc  and the 
analyzed time interval is ]2/,2/[ TT− . 

In summary, if the sampled signal of the analyzed signal )(tx  is 
,1,,2/)(( −−= NnnTx s  )12/,,2,1,0 −N , sNTT = , and the zooming 

times is p  (which is relative to the frequency resolution Tf /11 =  in FFT 
algorithm), the spectrum rectifying process with deconvolution will be as 
follows:  

 step1  Determine T  and ε , and calculate the scale of Gauss window 
function ( )ετ ln2/ −= T .    

 step2  Sample the Gauss signal ( )2/)( τtetc −=  in time period of 
]2/,2/[ TT−  with sampling interval sT  to obtain discrete Gauss signal 

)12/,,2,1,0,1,,2/)(( −−−= NNnnTc s . 
 step3 Obtain discrete windowed signal ),()()( sss nTcnTxnTx =  

,0,1,,2/( −−= Nn )12/,,2,1 −N .    
 step4  Use eqn. (1) to calculate the zooming spectrum of )( snTx  with 

resolution pff /10 =  )/(1 pT=  and obtain )()()( 000 kfXjkfXkfX ir +=
     )12/,,2,1,0,1,,2/( −−−= MMk , where pNM = .

  step5 Use eqn. (21) to calculate ,,1)(()( 0 MkkfCkRr −==  )1−M   

and obtain matrix MM
rR × . 

step6 Use eqn. (18) and eqn. (19) to obtain 1×M
rX  and 1×M

iX , and the 
rectified spectrum )12/,,2,1,0,1,,2/)(( 0 −−−= MMkkfX . 

4 Experiments 

4.1 Simulation signal 

Let a simulation signal )5.02sin()3.02sin()( tttx ×+×= ππ  be sampled with 
non-integral periodic interval 133.0=sT s and sampled length 100=N , then a 
discrete signal with limited length )( snTx  )12/2/( −≤<− NnN  is obtained 
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as shown in Figure 1(a). Its FFT amplitude spectrum is shown in Figure 1(b). A 
Gauss window function with τ =3.362 is shown in Figure 1(c) and its amplitude 
spectrum is shown in Figure 1 (d). Processing signal )(tx  with the Gauss 
window function, a discrete windowed signal <− 2/)(( NnTx s  )12/ −≤ Nn  
of )(tx  is obtained as shown in Figure 1 (e). The relative FFT amplitude 
spectrum is shown in Figure 1 (f). A double zooming spectrum is obtained by 
using eqn. (1) to treat the signal )( snTx  as shown in Figure 1 (g). Finally the 
rectifying result of the zooming spectrum with deconvolution eqn. (18) and eqn. 
(19) is shown in Figure 1 (h). The rectifying effect can be found obvious when 
comparing Figure 1(h) with Figure 1(b). Some noise in the spectrum shown in 
Figure 1 (h) is the error caused by the approximate calculation of eqn. (4) to eqn. 
(19).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Random signal 

Figure2 (a) shows an airconditioner signal whose FFT amplitude spectrum is 
shown in Figure 2(b). The four-times zooming amplitude spectrum of windowed 
signal by Gauss window function is shown in Figure 2(c) and its rectified 
spectrum with deconvolution is shown in Figure 2(d). It is found that the 
sidepetal in FFT amplitude spectrum is eliminated effectively when comporing 
Figure 2(c) with Figure 2(d). 
 

Figure 1:    Simulation signal and its rectified spectrum.

(a)                                                         (b)  

 (c)                                                         (d)  

 (e)                                                          (f) 

(g)                                                        (h) 
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5 Conclusions 

A deconvolution-based spectrum rectifying technique with the relative basement 
and algorithm is developed in this paper. Two notable points when using this 
technique are: (1) the window function must be properly selected, and (2) the 
scale of the window function must be adaptive to length T of the analyzed signal. 
A simulation signal and a random signal experiment demonstrate that the 
rectifying technique is very effective.  
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