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Abstract 

This paper presents constitutive simulations for cracked solids based on 
continuum damage mechanics. The aim is to demonstrate that the models can 
predict the experimentally observed effects in brittle materials. For a reference 
specimen, we have chosen a slant crack that is centrally located in a concrete 
panel, under step tensile pulse loading. Simultaneously, we observed the location 
of the damage and the tension – softening phenomena. We include a technique 
employing standard finite elements and a domain integral, Ĵ , to set the dynamic 
stress intensity factor for a fast growing crack in both a linear elastic and a 
viscoelastic body. 
Keywords: dynamic characteristic, energy release rate, failure, flow rule, 
internal variable, strain rate, sublevel crack. 

1 Introduction 

Precise predictions of the response of brittle materials require an understanding 
of their dynamic fracture characteristics. Many observed effects, like the strain-
rate phenomena, crack-tip damage, and tension softening, may not be elucidated 
by classical elastodynamic fracture mechanics. In the proposed study, the 
dynamic fracture of brittle materials is expounded with the use of a continuum 
damage simulation in accordance with the E.P. Chen model [1]. Concurrently, 
the material is approximated as a continuum with a random distribution of 
sublevel cracks. Mobilization of these cracks by the load leads to progressive 
damage to the material. In the continuum grade, the softening of the material 
moduli responds to damage accumulation. To indicate the practicality of this 
model, we investigated, the problem of an oblique crack located centrally in a 
concrete slab, and subject to the impact of a step tension impulse applied at the 
boundary of the panel. This version explains the dynamic fracture course as a 
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continuous increase in damage while the damage is limited to the volume 
fraction of the material that has been tensile relaxed by multiple crack growth 
and interaction. 
      In the analysis of dynamic stress intensity factors with straight finite 
elements, a difficulty arises in extracting these factors from the numerically 
stipulated stresses and displacements. To avoid this inconvenience, a finite 
domain J integral, standing for the dynamic energy release rate, was initiated 
according to [2], and it was employed to determine the dynamic stress intensity 
factors for abruptly loaded static cracks. 

2 CDM model parts 

The general continuum damage model has three fundamental segments: 
a. A set of independent internal variables, pk, which together with the 

infinitesimal strain tensor ε (or the stress tensor σ) are assumed to specify 
uniquely the momentary state of the solid at a given point.  
The internal variables may stand for a physical quantity or may be abstract in 
nature. They can be related to kinematic properties or to structural 
characteristics. For example, the vector ec in the smeared crack model is 
intended to represent the internal kinematics of cracks and n, the crack 
direction, is a structural internal variable. It should be noted that when a set 
of internal variables is selected, any other set, equivocally related to the first, 
is rigorously equivalent to it and, for this reason, can be employed instead of 
the first. This makes the physical interpretation of a given set of internal 
variables marginally ambiguous. 

 
b. An equation set expressing the stress to the strain and to the internal 

variables: 
σ = S(ε, pk)     (1) 

 
In present-day thermodynamic formulations, eqn (1) is deduced from a free 
energy function that represents a scalar function to be determined instead of 
(1). As a rule, eqn (1) is assumed to be linear in the infinitesimal strain 
tensor. 

 
c. A set of “flow rules”, characterizing the manner in which the internal 

variables increase when loading proceeds. This is a delicate and essential 
point, since prescribing different flow rules to models having the same set of 
internal variables and the same structure for the stress strain relation, eqn (1), 
will lead to very different behaviour. Moreover, the flow rules must be 
consistent with the irreversibility condition posed by the Second Principle of 
Thermodynamics. 
The flow rules may be particularized at many different grades of generality: 
A rather universal treatment for time-independent behaviour is to use one or 
more loading functions obtained by direct generalization of the theory of 
classical plasticity. For this purpose, internal forces qk conjugate with the 
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internal variables must be chosen (they are readily obtained in a 
thermodynamic formulation), and a loading function F(qk) must be specified, 
so that for the region in which the characteristics are elastic (i.e.: dpk = 0 for 
any k) it holds: 

F(qk) ≤ 0          (2) 
and the associated flow rules are: 
 

( )dµqF/dp kk ∂∂= ,  dµ ≥ 0   (3) 
 

It is evident that a hierarchical organization of internal variables is possible, 
so that the primary set pk appearing in equation (1) is complemented by a 
secondary set of hardening-softening parameters entering the loading 
function (2). 
Though this is a rather general formulation, it is not the only one possible, 
e.g. another is of multi-yield surface type. We can also generate restricted 
flow rules for particular loading instances, among which monotonic loading 
is the simplest and most effective. 

3 A simulation type 

Let us assume that the material is penetrated in the damage model by an array of 
randomly distributed cracks which propagate and interact with one another 
subject to tensile loading. The simulation does not endeavour to use each 
individual crack but rather handles the growth and interaction of the cracks as an 
internal state variable which stands for the damage accumulation in the material. 
This damage, D, is assumed to reduce the material stiffness according to the 
Budiansky and O´Connell equations applicable to a random array of            
penny-shaped cracks in an isotropic elastic milieu  
 

( )1-DKK =      (4) 
 
where K and K  mean, respectively, the bulk modulus for an undamaged and a 
damaged material. The damage is related to the damaged Poisson’s ratio υ  and 
crack density parameter Cd by means of the expression  
 

( )
( ) d

2

C
1-2υ9
υ1-16D =        (5) 

 
The crack density parameter relates to the undamaged Poisson’s ratio, υ and υ  
via  

( )( )
( ) ( )[ ]3υ1υ10υυ1-

υ2υυ-
16
45C 2d +−

−
=    (6) 

Accordingly, when the crack density parameter is known, the damaged Poisson’s 
ratio can be determined from eqn (6) and the damage parameter is found from 
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eqn (5). The crack density parameter gives information about cracking in a given 
volume, in that it is assumed to be proportional to the product of N, the quantity 
of cracks per unit volume, and a3, the cube of the mean crack size in the volume 
element examined, i.e. 
 

Cd ~ Na3     (7) 
 
As a rule, N is expressed as a Weibull statistical distribution function stimulated 
by the present bulk strain measure P/3 K , where P is the pressure or mean stress 
P = (σxx +σyy +σzz) / 3, in compliance with  
 

m

K3
PkN 






=         (8) 

 
In eqn (8), k and m are material constants to be specified from the strain-rate 
dependent fracture stress particulars. Since the size of the splinters is determined 
by the intersecting crack network within the concrete volume, the crack 
dimension is considered to be proportional to the splinter size. Consequently, the 
average crack size, a, is estimated from the nominal splinter diameter expression 
for dynamic fragmentation in a brittle material, being 
 

3/2
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
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




ερ s

Ic

C
K

a           (9) 

where we have denoted  
ρ ………..mass density  
Cs ………uniaxial wave velocity ( E/ρ ) 
E ……….Young’s modulus 
KIC………fracture toughness of the material, and  

maxε …….maximum measuring strain rate experienced by the 
material in the course of the fracture process 

 
The average crack size that has been activated by the load applied in the volume 
element under consideration results from eqn (9). Thus, when the strain rate is 
low, only large cracks have been activated and the material can only separate 
into a few large pieces. On the other hand, under high strain rates, smaller cracks 
would also have been activated and the specimen can break into many small 
fragments. The proportionality constants from eqns (7) and (8) can be absorbed 
into constant k. Hence, the additional material parameters for this constitutive 
model, aside from the commonly defined ones, are k and m as given in eqn (8). 
When bulk tension occurs in the material, we can at each time step calculate the 
damage parameter, D, from the above expressions. The stiffness is then degraded 
by the factor (1 – D). In this fashion, the post-damage responses of the material 
are represented. Note that the damage parameter, D, is an internal state variable 
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which is evolutionary and irreversible in reality. In compression, it is assumed 
that the material characteristics are elastic/perfectly plastic.  

3.1 Dynamic material characteristics  

Constants k and m in the simulation are specific to the dynamic responses of the 
material considered. Representative values of concrete are listed in Table 1. 
     In order to evaluate constants k and m for the damage model,                  
strain-rate-dependent tensile strength particulars for concrete in the range of 
strain rates of 1 to 100/s are required. These data can be estimated from the 
fracture toughness value via the equation 

3/1
3/1

2

2

c 16
9

εσ 







=

CY
EK Ic    (10) 

 
Concurrently, Y is a crack geometric shape factor, and C means the shear wave 
velocity. Assuming that the sublevel cracks are penny-shaped, Y amounts to 
1.12. The results of this estimation are demonstrated in fig. 1. Constants k and m 
can be stipulated from the strain-rate dependent fracture stress. The quantities of 
k and m relevant to the issues in fig. 1 are derived to be 5.75 x 1021/m3 and 6.0, 
respectively.  

Table 1:  Typical concrete properties. 

Mass density 2.4 Mp/m3 
Young’s modulus 20.7GPa 
Poisson’s ratio 0.18 
Fracture toughness 2.75 MPa m  
Compressive strength 27.6 MPa 

 

 

Figure 1: Strain rate versus fracture stress for concrete. 
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3.2 A panel weakened by a slant crack  

The structure is subject to uniform tension exerted at the top and bottom edges 
according to fig. 2, with plane strain conditions being considered in the 
investigated region. The load is applied in the form of a step function in time 
valued at 10 MPa. The finite element grid is demonstrated in fig. 3. 
 

 
Figure 2: Example problem geometry. 

 
Figure 3: Finite element grid for the example problem. 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 

© 2006 WIT PressWIT Transactions on The Built Environment, Vol 87,

328  Structures Under Shock and Impact IX



     All tests were finalized at 0.4 ms because, at this time, a minimum of two 
loading and unloading cycles had appeared close to the elements round the crack 
tips. This is adequate time to explain some of the main traits in the damage 
simulation. The results were obtained from the PRONTO 2D code [3]. The crack 
surfaces are considered to be contact ones to prevent them from flipping over 
subject to compressive stresses from waves reflected from the boundaries. The 
mean stress against time plot for the element close to the lower crack tip in the 
case of both the elastic and damage models is indicated in fig. 4. The position of 
this element is demonstrated in fig. 3, being a darkened square. This element, 
which is immediately ahead of the crack tip, is designated as Element 1. The 
element whose location corresponds to Element 1 for the upper crack tip has 
similar behaviour and thus will not be shown. Because of the interactions 
between the stress waves and the bounding surfaces, this element will have 
multiple loading and unloading cycles. Because of the sublevel crack activation 
in the damage model, damage is being accumulated in the element. Therefore, 
the pressure was relaxed in the damage model and its magnitude began to 
decrease shortly after 0.05 ms, notwithstanding that loading continues in the 
elastic mode. The damage time-history for this element is demonstrated in fig. 5. 
This figure shows that the damage initially increases with time, following in 
essence the stress curve in fig. 4, and finally reaches an altitude of approximately 
0.66. Note that damage does not decrease after t = 0.05 ms even if there is 
unloading is owing to wave interactions. The damage accumulation advances 
irreversibly. 
 

 

Figure 4: Time versus pressure at Element 1. 

4 Dynamic stress intensity factor for a rapidly growing crack 

The method employing the conventional elements and the Ĵ -integral is applied 
to the problems of rapid crack propagation in elastic and also in viscoelastic 
solids. The energy release rate Ĵ  has the form: 
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∫→→
−=

endΓ 1,00
limlimˆ ΓduTJ iiδε

       (11) 

where Γend stands for the rectangular path as demonstrated in fig. 5, Ti
  the 

fraction and ui the displacements. Note that the path Γend should be contracted on 
the crack tip by permitting δ → 0 and then letting ε→0. 
 

 

Figure 5: Infinitesimally small rectangular path Γend and arbitrary path Γ 

     Let us assume a finite region round the crack tip, and let Γ indicate the 
boundary of the region and A designate the area bounded by Γ and Γd and the 
crack surfaces. Application of the divergence theorem to eqn. (4.1) gives a 
relation for Ĵ : 
 

( ) ΓduTdAεσuuρJ iiijijiA iδε ∫∫∫ −+=
→→ Γ 1,1,1,00

limlimˆ               (12) 

 
where εij represents the strain and dot (.) the time derivative. It is noted that the 
quantity of eqn. (12) is independent of the path Γ for any standard of material 
response.  
 
In the case of an elastic material, elastic strain energy density We is given by the 
relation 

ijijεσ
2
1We=      (13) 

 
Accordingly for eqn. (12) it holds: 
 

( ) ΓduTnWdAuuρJ
Γ iieiA iδε ∫∫∫ −+=

→→ 1,11,00
limlimˆ   (14) 

 
where ni implies the unit outward normal. For a fast growing crack, the integrand 
of the area integral in eqn. (14) is singular as r-2 (r: distance from the crack tip) 
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and hence the value of the integral depends on the limiting process. Therefore, 
the limiting symbols should not be left out in eqn. (14), likewise in eqn. (12). 
     To reduce the order of the singularity in the integrand of the area integral, the 
following equation is taken away from eqn. (14) 
 

Γρρ
Γδε

dnuudAuuJ iiiA i 11,00 2
1limlimˆ ∫∫∫ −=

→→
   (15) 

 
In this manner, we get another form of J as follows 
 

( ) Γρρρ
Γδε

duTnuuWdAuuuuJ iiiieiiiA i ∫∫∫ 







−






 ++−=

→→ 1,11,1,00 2
1limlimˆ     (16) 

 
As the integrand of the area integral has a singularity less than 2, the area integral 
is integrable. The three-dimensional Ĵ  is constituted from the angle of dynamic 
stress intensity factor KI(t,v) in the form: 
 

( ) ( )
( )2

2

14
ˆ

κµ
tKvAJ II

−
=     (17) 

where 

( ) ( ) ( )
( )( )[ ] ( )22

0
2/12

0
2
0

2

2/12
0

22
0

2

2114

112

βββκ

βκβκ

−−−−

−−
=vAI    (18) 

 
tcvβ /0 =         (19) 

1/ cct=κ        (20) 
 

µ means the shear modulus, ct the shear wave velocity, c1 the longitudinal wave 
velocity. 
     In the case of a viscoelastic material, the close-to tip fields may be 
approximated by those of an elastic material with the elastic constants replaced 
by the initial values of the relaxation functions, because the strain rate is very 
high near the tip of a rapidly propagating crack. Therefore, replacement of µ by 
µ(0), the initial value of the relaxation function in shear (in eq. (17)) results in 
the relationship between Ĵ  and KI(t,v) for a viscoelastic material. 
     The dynamic stress intensity factors for some problems can be calculated by 
applying the three apparently different expressions of the Ĵ -integral (eqns (12), 
(14) and (16)). The conventional triangular constant strain elements are used and 
the crack node release technique is employed for modelling crack growth. The 
error due to the omission of the limiting processes may be estimated by 
comparing the results obtained from eqns (12) and (14) to those from eqn. (16). 
     The following problem is to be analyzed. A tensile step pulse σ is applied to a 
centrally cracked rectangular plate (width 2W=104 mm, height 2H=40 mm, 
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initial crack length 2a=24 mm, Poisson’s ratio ν=0.286, ρ=2.45 Mp/m,         
µ=29.4 GN/m) at time t=0. The crack is stationary for t<4.4 µs and it begins to 
propagate at a constant velocity υ=1000 m/s. The Ĵ -integral is computed over 
various determined trajectories, when selecting the paths which are to be 
translated as the crack tip approaches. 
     The KI(t,v) specified by the Ĵ -integral is derived and the time when the nodal 
force starts to be released is indicated. It is observed that the dynamic stress 
intensity factor can be stipulated precisely without applying a special element. 

5 Conclusion 

To investigate the dynamic response of brittle materials weakened by sublevel 
crack aggregations, a simulation based on continuum damage mechanics was 
applied. The model uses the dynamic fracture process, which is a continuous 
increase in the damage when the damage is defined as the volume fraction of the 
material that has been tensile discharged by multiple crack growth and 
interaction. A numerical model of a center-cracked concrete sample under a step 
tension pulse was performed. Tension-softening characteristics in the concrete 
were predicted by the simulation to be the result of sublevel cracking effects that 
were present in the material, and not the assumed constitutive characteristics. 
The location of the damage region close to the crack is also predicted by the 
simulation. The local collapse from the view of the process zone and the global 
failure by virtue of the degree of reduction in load carrying capacity are also 
discussed. Analyses of accurate techniques for modelling crack growth with high 
acceleration or deceleration and those for simulating crack propagation in 
yielding materials would be necessary to assure a higher level of integrity and 
also safety of construction. 
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