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Abstract 

Predicting non-ideal airblast loads is presently a complex computational art 
requiring many hours of high-performance computing to evaluate a single blast 
scenario. The goal of this research is to develop a method for predicting blast 
loads in a non-ideal environment in real time. The proposed method is 
incorporated in a fast-running model for rapid assessment of blast loads in 
complex configurations such as a dense urban environment or a blast 
environment behind a blast barrier. 
     This paper is concerned with an accurate prediction of the blast loads from a 
bomb detonation using a neural network-based model. The approach is 
demonstrated in application to the problem of predicting the blast loads in city 
streets. To train and validate the neural networks, a database of blast effects was 
developed using the Computational Fluid Dynamics (CFD) blast simulations. 
The blast threat scenarios and the principal parameters describing the street 
configurations and the blast wall geometry were used as the training input data. 
The peak pressures and impulses were used as the outputs in the neural network 
configuration. 
Keywords: neural networks, blast loads, urban environment, explosion, 
numerical simulation. 

1 Introduction 

Protecting civilian buildings from the threat of terrorist activities is one of the 
most critical challenges for structural engineers today. Events of the past few 
years have greatly heightened the awareness of structural designers of the threat 
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of terrorist attacks using explosive devices. Extensive research into blast effects 
analysis and methods of protective design of buildings has been initiated in many 
countries to develop methods of protecting critical infrastructure and the built 
environment. 

  Although it is recognised that no civilian buildings can be designed to 
withstand any conceivable terrorist threat, it is possible to improve the 
performance of structural systems by better understanding the factors that 
contribute to a structure’s blast resistance. One of such factors is the ability of 
the structural designer to accurately predict the blast loadings on structural 
components using analytical or numerical tools that take into account the 
complexity of the building, the presence of nearby structures, and the blast   
wave-structure interaction phenomena. 

  In recent years, the use of non-traditional tools based on artificial intelligence 
has received significant attention from the civil engineering researchers in 
relation to the systems that exhibit dynamic, multivariate, and complex 
behaviours (e.g. wave forces, weather conditions, shock and impact problems). 
In this paper, an approach based on the neural network methodology is 
developed to train the neural networks capable of predicting the blast resultants 
in the complex geometries with reasonable accuracy, cost, and minimum 
computing requirements. For brevity, the approach is demonstrated only in 
application to the problem of predicting the blast loads in city streets. The 
approach has also proven to be effective in other complex blast wave-structure 
interaction problems such as predicting the blast environment behind a rigid blast 
barrier. 

2 Effect of adjacent structures on blast loads on buildings 

Blast loads in simple geometries can be predicted using empirical or             
semi-empirical methods. These can be used to calculate blast wave parameters 
for hemispherical or spherical explosive charges detonated near the surface or in 
a free air to predict blast effects on isolated structures and structural components. 

  Events of the recent years have demonstrated that the most common source 
of unplanned explosions were terrorist devices in urban environment. In complex 
urban geometries, the blast wave behaviour can only be predicted from first 
principles using such numerical tools as AUTODYN [1], Air3D [2], and some 
others. Such tools solve the governing fluid dynamics equations and can be used 
to simulate three-dimensional blast wave propagation including multiple 
reflections, rarefaction and diffraction. In addition, Computational Fluid 
Dynamics (CFD) techniques can capture such key effects as blast focussing due 
to the level of confinement, shielding by other buildings and component failure 
(e.g. a window failure). 

3 Neural networks 

Artificial neural networks (ANNs) are computational models loosely inspired by 
the neuron architecture and operation of the human brain [3]. They are massively 
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parallel; they can process not only clean but also noisy or incomplete data. 
ANNs can be used for the mapping of input to output data without knowing ‘a 
priori’ a relationship between those data. ANNs can be applied in optimum 
design, classification and prediction problems. 

  An artificial neural network is an assembly (network) of a large number of 
highly connected processing units, the so-called nodes or neurons. The neurons 
are connected by unidirectional communication channels (“connections”). The 
strength of the connections between the nodes is represented by numerical 
values, which normally are called weights. Knowledge is stored in the form of a 
collection of weights. Each node has an activation value that is a function of the 
sum of inputs received from other nodes through the weighted connections. 

  The neural networks are capable of self-organisation and knowledge 
acquisition, i.e. learning. One of the characteristics of neural networks is the 
capability of producing correct, or nearby correct, outputs when presented with 
partially incomplete inputs. Further, neural networks are capable of performing 
an amount of generalization from the patterns on which they are trained. Most 
neural networks have some sort of “training” rule whereby the weight of 
connections is adjusted on the basis of presented patterns. Training consists of 
providing a set of known input-output pairs, patterns, to the network. The 
network iteratively adjusts the weights of each of the nodes so as to obtain the 
desired outputs within a requested level of accuracy. Error is defined as a 
measure of the difference between the computed pattern and the expected output 
pattern. 

3.1 Multilayer Perceptron Network (MLP) 

The multi-layer perceptron (MLP) network trained by means of the              
back-propagating algorithm   is currently given the most attention by application 
developers. The MLP network belongs to the class of layered feed-forward nets 
with supervised learning. A multi-layer neural network is made up of one or 
more hidden layers placed between the input and output layers as shown in 
Figure 1. 

  Each layer consists of a number of nodes connected in the structure of a 
layered network. The typical architecture is fully interconnected, i.e. each node 
in a lower level is connected to every node in the higher level. Output units 
cannot receive signals directly from the input layer. During the training phase 
activation flows are only allowed in one direction, a feed-forward process, from 
the input layer to the output layer through the hidden layers. The input vector 
feeds each of the first hidden layer nodes, the outputs of this layer feed into each 
of the second hidden layer nodes and so on. 

  At the start of the training process the weights of the connections are 
initialised by random values. During the training phase, representative examples 
of input-output patterns are presented to the network. Each presentation is 
followed by small adjustments of weights and thresholds if the computed output 
is not correct. If there is any systematic relationship between input and output 
and the training examples are representative of this, and if the network topology 
is properly chosen, then the trained network will often be able to generalize 
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beyond learned examples. Generalization is a measure of how well the network 
performs on the actual problem once training is complete. It is usually tested by 
evaluating the performance of the network on new data outside the training set. 

  Generalization is most heavily influenced by three parameters: the number of 
data samples, the complexity of the underlying problem and the network 
architecture. Currently, there are no reliable rules for determining the capacity of 
a feed-forward multi-layer neural network. Generally, the capacity of a neural 
network is a function of the number of hidden layers, the number of processing 
units in each layer, and the pattern of connectivity between layers. 

  During first stage of creating an artificial neural network to model an      
input-output system is to establish the appropriate values of the connection 
weights and thresholds by using a learning algorithm. A learning algorithm is a 
systematic procedure for adjusting the weights and in the network to achieve a 
desired input – output relationship, i.e. supervised learning. The most popular 
and successful learning algorithm used to train multi-layer neural network is 
currently the back-propagation routine. 

 

 

Figure 1: A simple back-propagating network for evaluation of blast effects 
in city streets. 

3.2 Use of neural networks for predicting blast loads 

The problem of blast in an urban environment is manifold; there are several 
different aspects that are of interest. Principally, among these are the direct 
effects of blast on people (both indoors and outdoors), the indirect effects of 
blast on people: from broken glazing, fallen masonry and collapsed building, and 
damage to buildings. 
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  It is important to appreciate these problems if evacuation distances or safe 
areas within buildings are to be identified. All the above considerations have one 
common feature: they can only be quantified once the precise blast environment 
(in terms of pressure and impulse) is known throughout the region of interest. 

Unfortunately, the effect of urban geometry on the propagation of blast waves 
is vast and complicated subject, and only recently has it begun to be approached 
in fundamental and systematic manner (Rose and Smith [4], Remennikov [5, 6]) 
and Remennikov and Rose [7].  In this paper, investigation of the effect of the 
street configurations on the pressure and impulse is one of the primary 
objectives. In order to quantify this effect, the pressure and impulse enhancement 
factors are defined as: 

 
street configuraton

p
unconfined burst

Peak pressure
Pressure enhancement factor (E ) = 

Peak pressure
 

 
street configuraton

imp
unconfined burst

Peak impulse
Impulse enhancement factor (E ) = 

Peak impulse
 

  One of the goals of the presented study was to develop a fast-running tool for 
predicting blast loads in an urban environment. This was accomplished by 
training an artificial neural network to approximate the pressure and impulse 
coefficients generated by a series of Computational Fluid Dynamics (CFD) 
numerical simulations for a selected street configuration and by varying the 
principal geometrical parameters of this street configuration. This possibility 
arises because every pressure monitoring location on the building façade can be 
identified by four independent parameters: 

 
Parameter [m/kg1/3] 

scaled street width w/W1/3 
scaled building height h/W1/3 
scaled distance along the street x/W1/3 
scaled height of the monitoring 
location above the ground 

y/W1/3 

 
  These four parameters can fully characterise the highly non-linear 

relationship between the explosive source weight, W, the standoff parameters x 
and y, and the resulting peak pressure and peak scaled impulse. Therefore, these 
four parameters could be used as inputs to train the neural network using data 
generated by the CFD numerical simulations. 

  The problem of blast loads in an urban environment on the basis of CFD 
simulated numerical data is essentially a prediction (interpolation) problem. 
Since artificial neural networks are proving to be an effective tool for predicting 
values of blast loads, the basic idea in a neural network based approach is to train 
a network with patterns of the street and blast scenario parameters describing the 
spatial distribution of blast loads on building facades. This implies that each 
pattern represents the unique value of peak pressure and peak scaled impulse at 
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each of the monitoring locations due to detonation of an explosive charge, W, at 
a particular location described by values of x and y, in a street with principal 
parameters w and h. Therefore, the patterns of the quantities describing the blast 
environment are used as inputs and the peak pressure and peak scaled impulse as 
outputs to train the neural network. 

  The training of a neural network with appropriate data containing the 
information about the cause and effect is a key requirement of a neural network 
approach. This means that the first step is to establish the training set, which can 
be used to train a network in a way that the network can predict the blast effects 
with the reasonable accuracy of 5 to 10 % of the CFD-generated results. Ideally, 
the training set should contain data obtained by measurements, model tests or 
through numerical simulation, or through a combination of all three types of 
data. 

  In order to verify how well a trained network has learned the training cases, 
the trained network is tested by subjecting it to the training sets. The important 
generalization capability of a neural network for predicting blast wave 
parameters is tested by subjecting the trained network to data not included into 
the training sets (the so-called validating sets). How well a trained network is to 
generalize depends on the adequacy of the selected network architecture and the 
information on the blast load environment included in the training sets. 

  This study considers a broad range of scaled street widths: w/W1/3 = 0.8 to 3.2 
m/kg1/3 and covers much of the range of practical interest. Similarly, scaled 
building heights from h/W1/3 = 0.4 to 2.4 m/kg1/3 is considered, which roughly 
equates to one to six storey buildings for a charge weight of 1000 kg. The scaled 
distance along the street was limited to the range 0.0 to 10.0 m/kg1/3, which 
equates to a 100-m distance along the street for a 1000 kg explosive charge. 
Results of this study will lead to the possibility of using the information to 
predict blast loads (pressures and impulses) at any location in a street from 
knowledge of the charge weight, street width and building height. 

3.3 Preparation of the dataset 

The programme of numerical simulations was designed to cover most of the 
range of street widths that exist in real cities. Seven different street widths:         
w = 8, 12, 16, 20, 24, 28 and 32 m were considered. Similarly, the six different 
building heights: h = 4, 8, 12, 16, 20 and 24 m, which modelled one to six storey 
buildings, respectively, were used. For each street width, an additional 
simulation was performed for no buildings in the model. This last analysis 
produced side-on pressures and was used to evaluate values of the pressure and 
impulse enhancement factors. A total of 49 analyses were performed in this 
matrix to establish the enhancement factors data sets for training of the neural 
network. 

  A typical straight city street configuration is shown in Figure 2. The distance 
along the street l, the width w, and the location of a hypothetical hemispherical 
explosive charge W are indicated. Figure 2 also shows the end view of the street 
where the building height h and the building depth d are indicated. 
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  The parametric study was based on a 1000 kg TNT hemispherical charge, 
detonated on the centreline of the street. A computational domain x = 125 m 
(along the street) by y = 48 m wide and z = 48 m wide was used, requiring about 
2,500,000 computational cells. Pressure monitoring points were located at 5 m 
intervals from x = 0 m to x = 100 m along the length of the street and in the 
vertical plane at levels y = 2 m, 6 m, 10 m, 14 m, 18 m and 22 m above the 
ground. The computational domain was extended sufficiently far in each 
direction to ensure that the presence of the boundaries did not affect the solutions 
at the pressure measuring locations. 
 

 

Figure 2: Plan and end view of a straight city street configuration. 

3.4 Neural network implementation 

The implementation stage of a neural network model typically includes the 
following two tasks: (1) data preparation, and (2) training and testing. Data 
preparation was conducted by performing a series of blast propagation analyses 
for the geometry shown in Figure 2 and using the test matrix of different 
building heights, street widths, and recording the values of the output parameters 
(peak pressures and peak scaled impulses) along the length of the street at the 
pressure measuring points. The developed dataset was collected and formatted to 
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conform to the Air3D model input and output parameters identified at the design 
stage. Afterwards, the neural network was trained on the data and further tested 
on new datasets not used in training to ensure its generalisation performance. 

  NeuroShell 2 [8], Release 4.0, was the neural network software utilised in the 
present study to train the network. The program implements several types of 
neural networks and architectures, including backpropagation nets, the        
multi-layer backpropagation nets, the genetic adaptive general regression neural 
networks (GRNN), the polynomial nets (GMDH), the backpropagation nets with 
jump connections and some others. 

3.5 Performance and analysis of the ANN models 

Four neural networks with different architectures were trained. Processing the 
actual data through the trained neural network produces the network’s 
predictions for each pattern in the data file. Statistical analysis of the ANN 
models is given in Table 1. Table 1 shows the R2 (the coefficient of multiple 
determination) and the maximum absolute error (the maximum of |actual – 
predicted| of all patterns). It can be seen that all three tested backpropagation 
networks demonstrated fairly good accuracy of the predicted overpressures and 
impulses with the coefficients of multiple determination being very close to 1. 
The general regression neural network (GRNN) produced relatively low value of 
R2 (0.794) for the predicted overpressures compared to the backpropagation 
networks (0.993). The same tendency is observed with regard to the maximum 
absolute error introduced by the selected networks. The maximum absolute 
errors for both the overpressures and impulses predicted by GRNN are indicative 
of higher errors and lower accuracy of the results. It can be concluded from the 
analysis of the performance of the trial networks that the 4-layer 
backpropagation network configuration produced the most accurate predictions. 

Table 1:  Configuration and statistical performance of trial networks. 

Configuration of networks R2 N
o 

Network 
Architecture Input 

units 
Hidden 
units 

Output 
units Pressure Impulse 

1 3-layer 
backpropagation 3 28 2 0.975 0.982 

2 4-layer 
backpropagation 3 14 /14 2 0.993 0.995 

3 5-layer 
backpropagation 3 8 / 8 / 8 2 0.993 0.995 

4 GRNN (general 
regression NN) 3 1892 2 0.794 0.967 

4 Results and discussion 

As discussed earlier, the database of blast effects was generated using the blast 
propagation code Air3D for a typical straight street configuration. Several trial 
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neural networks were tested and the best network with least absolute error in 
both output variables was selected. The 4-layer backpropagation neural network 
with 2 hidden layers with eight units in each hidden layer was found to produce 
the best predictions for the blast effects across all ranges of the input parameters. 

  The trained neural network was used to estimate the blast peak overpressure 
and peak impulse for a range of input parameters used to generate the database of 
blast effects from a series of CFD numerical simulations. Figure 3 demonstrates 
the comparison of the peak pressures and impulses along a straight street 
predicted by the two methodologies for the value of the scaled street width 
representing narrow city streets. From Figure 3, it can be seen that the blast 
effects predicted by the trained neural network show very good agreement with 
those obtained from the CFD simulations. In particular, the positive impulses 
predicted by the trained neural network are in very close agreement with the 
CFD generated values. Based on the obtained results, it has been proven that a 
neural network can be used as an effective tool for rapid prediction of blast 
effects in urban environments. 
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Figure 3: Comparison of CFD- and neural network-based blast overpressures 
and impulses along the street (scaled street width = 0.8 m/kg1/3). 

5 Conclusions 

The main objective of this study was to evaluate a new approach of using 
artificial neural network for predicting the blast loads in complex city 
environments. A database of blast effects was built from a series of CFD blast 
simulations for a selected street configuration. This database was used to train 

symbols = Neural Network, 
solid lines = CFD analysis
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and test the neural network. Analysis of the network’s performance has 
demonstrated that the neural network can replace the time-consuming CFD 
analyses for a given street configuration and within the boundaries of the 
existing database of blast effects for this street configuration. It is expected to 
utilise the developed neural network-based technique as a part of an expert 
system that would be capable of predicting information about the likely injury 
and damage levels should an explosion occurs in a variety of urban environments 
based on the fast running predictive models. 
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