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Abstract 

In this paper the dynamic problem of the frictionless normal low velocity impact 
of a rigid sphere against an elastic plate-like body is studied by assuming that the 
period of duration of the impact is much larger than the time employed by the 
elastic waves in traversing the plate after the first impact, using a static contact 
law taking into account the thickness of the plate and a Hertzian pressure 
distribution between the sphere and the plate is adopted. A non-linear second 
order ordinary differential equation for the dynamical value of the indentation is 
obtained and, by using a perturbative technique, numerical solutions concerning 
the contact period, the maximum contact force and the maximum indentation in 
terms of the plate thickness are obtained. Numerical investigations show how the 
time of collision decreases with the increasing of the thickness-to plate radius 
ratio, the maximum indentation decreases and the maximum contact force 
increases. All these values approach Hertz’s values when the plate thickness 
increases. It is remarked that the solution presented here is valid only when the 
contact area radius is “small” in comparison to the plate thickness; if this 
assumption is not satisfied, the contact pressure distribution deviates 
significantly from the Hertzian prediction.   
Keywords:  contact mechanics, dynamical impact, elasticity theory, elastic plate. 

1 Introduction 

In this paper the dynamic problem of the frictionless normal low velocity impact 
of a rigid sphere against an elastic plate-like body is studied. In a dynamical 
framework an impact law taking into account the period load frequency and the 
thickness of the plate was obtained in [1]; nevertheless, if the period of duration 
of the impact is assumed much larger than the time employed by the elastic 
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waves in traversing the plate after the first impact, it is possible to perform a 
quasi-static analysis by adopting a contact law taking into account only the 
thickness of the plate [2, 3]. In such way, in section 2 the explicit form of the 
contact law in terms of the thickness of the plate is obtained by assuming a 
Hertzian  pressure distribution between the sphere and the plate and in section 3 
the equation of the motion is written by adopting the static contact law obtained 
in section 2. A non-linear second order ordinary differential equation for the 
dynamical value of the indentation is obtained and the use of a perturbative 
technique allows us to obtain the numerical values of the contact period, the 
maximum contact force and the maximum indentation in terms of the plate 
thickness.  

  Numerical investigation is performed in section 4 in order to evaluate the 
influence of the thickness-to-side in the analysis of the motion during a slow 
impact. It is shown how the time of collision decreases with the increasing of the 
thickness-to plate radius ratio; analogously, under the same assumption, the 
maximum indentation decreases and the maximum contact force increases. All 
these values approach Hertz’s values when the plate thickness increases. 

  It is remarked that the solution presented here is valid only when the contact 
area radius is “small” in comparison with the plate thickness; if this  assumption 
is not satisfied, the contact pressure distribution deviates significantly from the 
Hertzian prediction [4, 5]. 

2 Contact law in plate-like bodies 

A circular plate-like body of thickness 2h and radius b referred to a system of 
cylindrical coordinates (r,θ, z) is considered such that its origin 0 is placed at the 
center of the middle plane.  

  The requirement is imposed on the plate that the transversal displacement 
component w(r,z) is zero in r=b, in accordance with the notion of a simple 
support imposed on a thin plate. Now, if static axisymmetric loads are 
considered on the upper face of the circular plate, it is possible to use a Dini 
expansion for the radial displacement field u(r,z) and a Fourier Bessel expansion 
for the transversal displacement w(r,z):  
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  The functions gj(z) and fj(z) determine the variations in the displacements 

through the thickness of the plate; φ j = Ζj
(ο)

 /b have been put with Ζj
(ο) the 

positive zeros of the zero-order J0(r) Bessel function [6]. If the fields u(r,z) and 
w(r,z) are continuous and of bounded variation in the subinterval (p,q) of (0,b), 
such expansions are uniformly convergent throughout the interval (p+ε , q -ε), 
with ε >0 [7].   
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  It is observed that the requirement w(b,z)=0 is verified by the representation 
form of w for r=b.  

  By using the equilibrium equations, the following expressions for the 
functions gj(z) and fj(z) are obtained 
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and the coefficients ( ) ( ) ( )

1 2 3, ,j j jC C C  and ( )
4

jC will be uniquely determined by the 
boundary conditions.  

  Due to the complexity of the contact problem, traction conditions are 
introduced on the upper and lower faces of the plate in the form 
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where p(r) is the normal load on the upper face of the plate which is written as 
the following Fourier Bessel expansion 
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  A detailed discussion of the expansion convergence can be found in      

Watson [6].  
  By assuming the conditions (3) and the form (4) the expressions of the 

coefficients are obtained 
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where the terms Ω1 , Ω2, Ω3  and  Ω4  assume the form 
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  The displacement fields are obtained in explicit form from (1,2), by taking 

into account the explicit coefficients (4) for detailed pre-assigned pressure form 
p(r) and the coefficient expressions (5). 

  The contact law is obtained by using the explicit form of the transversal 
displacement in z=-h and 0r =  and can be written in the following compact 
form 
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where the pressure distribution form allows one to determine the terms of Aj by 
expression (4) and the terms Kj, taking into account the conditions on the upper 
and lower face of the plate and the thickness of the plate, assume the explicit 
following form 
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Now, we consider the action of a rigid sphere of radius R on a plate in which 

the contact area radius a of the sphere is small in comparison with the thickness 
of the plate; in this case, the following normal periodic Hertzian pressure p(r) is 
assumed acting on the upper face of the plate 
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where P is the resultant of the pressure on the contact area.  
  The coefficients Aj of (4), with the pressure expression (7), assume the form 
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  It is remarked that if the contact area of the sphere on the plate is large with 

respect to the thickness of the plate, the pressure distribution deviates 
significantly from the Hertzian prediction and a different expression for the 
pressure distribution has to be assumed [4, 5]. 

3 Equation of motion 

In this section the problem of the frictionless normal low velocity impact of a 
rigid sphere against an elastic plate-like body is studied.  

  By assuming that the period of duration of the impact (2tc) is much larger 
than the time employed by the elastic waves in traversing the plate after the first 
impact, the contact law presented in the preview section is adopted, in which an 
explicit form of the contact law is obtained in a static elastic framework taking 
into account the thickness of the plate [2, 3]. 

The equation of motion during the impact assumes the form  
 

( ) 0                                   ( ) 0m t P t tδ =+ >   ,                         (9) 
 

where m is the mass of the sphere and P(t) the instantaneous resultant pressure. 
The contact law obtained in section 2 for the Hertzian pressure distribution (7) 

may be inverted for 0<δ<b2/R and written as follows [8]: 
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where the first terms of the coefficients ξk   of the inverse expansion are 
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  The equation of the motion assumes the form 
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and the initial conditions are  
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( ) ( ) 00 0            and             0 vδ δ= = ,                          (12) 

 
where vo is the initial velocity of the sphere before the impact. 

The equation (11) may be reduced to the following form  
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and the solution obtained by using a perturbative technique. 

The linear term is denoted with δo(t) and the first corrective term with η(t); in 
such way, we have 
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It is possible to show that the corrective term may assume the form [1] 
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with the constant C obtained by the condition η(0)=0;  the functions G(t) and 
F(t) have the following expressions 
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  The numerical solution of the equation (13) carries out the indentation, the 

contact period and the maximum contact force.  
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4 Numerical results and conclusions 

In preview sections low velocity impact against a flexible structure is studied 
and, in comparison with the impact between compact bodies, an explicit solution 
taking into account both the dynamic deformation of the structure and the local 
deformation of the contact region has been obtained. 

  In this section numerical solutions of the equation (11) are found for a rigid 
sphere of radius R=0.13 m with initial velocity v0=1m/s in collision against a 
flexible plate with elastic properties λ=0.36 GPa and µ=0.43 GPa and ratio 
h/b=0.10.  

  By using the perturbative technique introduced in section 3, in fig.1 the 
collision history and the influence of the first correction term (16) of the linear 
term (15) in the equation of motion solution (14) are shown.  
 

 
 

Figure 1: Collision time for h/b=0.10. 
 
 

  In fig.2 it is shown how the time of collision (2tc) decreases with the 
increasing of the ratio h/b. 

  In comparison with Hertz’s classical theory it is observed that the 
deformability of the plate increases the maximum indentation, prolongs the 
contact period and transfers significant energy into structural vibrations [2]. 

  It is remarked that the mathematical approach utilized to find the contact law 
in section 2 is very powerful and has been utilized also in [9] to find the 
indentation in a film/substrate system.  
 

corrective term η(t) from eq. (15) 

2tc

δ 
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Figure 2: Time of collision for different ratio h/b. 
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