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Abstract 

The prediction of the structural behaviour is of crucial importance for a good 
design as well as for critical validation of the results of sophisticated computer-
based analyses. This is the reason why simple models are nowadays essential 
because they provide easy and accessible understanding of fundamental aspects 
of the structural response. The present work is a contribution to the search of 
simple models to understand the relation between Form and Structure. In this 
article, by using the Load Path Method, the behaviour of arches and domes, 
when subjected to gravitational and symmetrical loads has been analysed. 
Keywords: simple models, load path method, masonry structures, arch, dome. 

1 Introduction 

Following Roca et al. [1], who sustain simple methods based on fundamental 
principles (e.g. limit theorems of plasticity) as still crucial to catch on the 
primary aspects of the structural response, this article discusses the results of a 
study on the use of the Load Path Method to interpret the behaviour of masonry 
arches and domes. 
     The choice of the Load Path Method as an instrument to investigate structural 
behaviour derives from the wish to find a method that could represent the trait 
d’union between Structure and Architecture. 
     The absence of a common language is one of the reasons why nowadays there 
is a very big gap between the Architect and the Engineer. 
     The introduction of new materials and techniques during the Industrial 
Revolution and the born of the first polytechnics in the 18th century, led to a 
different cultural approach to the design causing the born of different languages 
between architects and engineers. 
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     Nowadays, with the widespread of very complicated works of the architecture 
there is a huge need to bridge the gap between architects and engineers. Maybe it 
can be achieved by finding a common method that should be useful to 
understand the structural behaviour as well as a clear and effective instrument of 
investigation and judgement. A method not only numerical but also geometrical 
that should predict calculation results disclosing the shape aspects from which it 
is possible to recognise the real structural behaviour. 
     In this context, focusing the attention on masonry arches and domes, this 
paper aims at highlighting that the Load Path Method seems to open new 
prospects in the search for a common language between engineers and architects 
to give voice, in harmony and in a single design, to formal, aesthetical, 
functional and structural aspects. 
     Even though either FEM analyses or optimisation algorithms (e.g. [2, 3]) are 
necessary to numerically analyse masonry structures, this article shows that 
simple methods, such as the Load Path Method, are sufficient to interpret the 
behaviour of masonry arches and domes. 

2 Key features of the load path method 

The Strut-and-Tie Model (STM hereafter) was originally developed by Ritter [4] 
for the analysis and design of reinforced concrete beams under shear.  
     The possibility of using the STM approach for the study of masonry structural 
behaviour has been recently investigated (e.g. references [5–7]). 
     Born as a method to design strut-and-tie models in reinforced concrete 
structures, the Load Path Method (LPM hereafter) was introduced by Schlaich et 
al. [8] and then developed mainly by F. Palmisano and A. Vitone (e.g. references 
[9–13]). Vitone [14], De Tommasi et al. [15], Palmisano et. al. [16], Palmisano 
and Elia [17, 18] proposed the Load Path Method to analyse also the behaviour 
of masonry structures. 
     In the transfer of forces within a structure or an element, from their point of 
origin (S) to their ends (E), deviations in the load path direction can occur 
causing a thrust (H); for equilibrium to be maintained, a reactive force must be 
applied that is equal in magnitude and opposite in direction to this thrust (Figs. 1 
and 2) 
     The load path represents the line along which a force or a force component 
(more precisely: the component of a force in a chosen direction, e.g. the vertical 
component of a load) is carried through a structure from the point of loading to 
its support. The force component (F in Fig. 1) associated with a load path 
remains constant on its way through the structure; as a consequence of this 
definition, thrust H must be perpendicular to the travelling load F. The design of 
this load flowing through the structure can be approximated by polygonal lines 
in which there are thrusts in every deviation node. 
     It follows that, according to the model, the structure will be crossed by fluxes 
in compression (dashed lines), when loads travel in the same direction of their 
path, and by fluxes in tension (continuous lines) along which loads go in the 
opposite direction with respect to their path (Fig. 2). According to the classical 
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theory, the basic principles of the Load Path Method are the respect of both 
equilibrium and consistency. Thrusts in deviation nodes are necessary in order to 
respect equilibrium and every path is possible if it is in equilibrium. 
 

 

Figure 1: Load Path (LP) and Strut-and-Tie model (STM). 

 

Figure 2: Load path: symbols. 

     Among infinite paths in equilibrium, loads have to choose the one in which 
their vectors invest the minimum quantity of strain energy (D), that is the only 
one both consistent and in equilibrium.  
     The total invested strain energy is 

 1
2 V

D dV= ∫σε  (1) 
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where V is the integration domain, σ and ε are the stress and the strain vector 
respectively. 
     Along a generic path, that is polygonal in this model, the calculus of the 
invested strain energy (D) is simplified in the summation of the terms which are 
relative to each side of the truss:  
 i

i
D D= ∑  (2) 

where i is the generic side of the load path. 
     For instance, if linear elastic constitute laws for materials are assumed as well 
as constant transversal section of each side, the elementary strain energy Di is 

 1
2i i i iD N l ε=  (3) 

where i is the generic side of the load path, Ni is the intensity of the vector that 
bears the travelling load on that side, li is the length of the generic side and εi is 
the mean strain on that side. 
     In the assumption of linear elastic constitute laws for materials with Young’s 
Modulus equal to E, if the transversal section of a side is linearly variable from 
A(1)

i to A(2)
i (e.g. half of a bottle-shaped strut) the elementary strain energy Di is 

 
( )

2 (1)

(2)(1) (2)

1
2

i i i
i

ii i

N l A
D Ln

AE A A
 

=  
−  

 (4) 

     From figure 2 it is possible to notice that the relation between the travelling 
load F and its vector N is  

 
sin

FN
θ

=  (5) 

where θ is the inclination of the path. If θ decreases, N increases; this means that 
the condition with θ nil is not consistent because it will produce an infinite value 
of N and, hence, of the strain energy D. The consequence of this consideration is 
that a travelling load cannot move orthogonally to itself. The only possibility to 
move in the direction orthogonal to the travelling load is to follow a path 
composed by inclined descending and ascending sides. 

3 The masonry arch and dome behaviour 

In this paragraph, the interpretation of the masonry arch and dome behaviour 
using the Load Path Method is presented; the method immediately exhibits the 
correlation between form (geometry) and structure (distribution of loads and 
thrusts). For the sake of simplicity, but without any loss of generality, the case of 
arches and domes geometrically symmetrical and symmetrically loaded only 
with vertical loads is considered.  
     According to Heyman [19] the behaviour of a masonry arch can be examined 
in the light of three simplified assumptions, each one of which is not strictly true 
and must be hedged with qualifications, and which must in any case be tested in 
the light of a contradictory experience with a particular building. The three 
assumptions are that: 
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(i) masonry has no tensile strength; 
(ii) stresses are so low that masonry has effectively an unlimited compressive 

strength; 
(iii) sliding failure does not occur. 

According to LPM, the three assumptions mean respectively that [16]: 
(i) loads and thrusts have to remain inside the arch and can follow only paths 

in compression; 
(ii) inside the arch the path of loads and thrusts can ‘touch’ the edges of the 

structure without implying the arch rupture; 
(iii) local ruptures involve neither an appreciable change of the shape of the 

load and thrust paths nor local discontinuities such as slippage of two faces 
of the same cross section. 

     Figure 3 shows the interpretation of the arch as the path of vertical loads. 
 

 

Figure 3: The arch as path of vertical loads. 

     According to LPM, in every node Oi, Fi deviates and applies a thrust to the 
structure: 
 ( ) coti i i iH F F ϑ= 

 (6) 
     For equilibrium to be maintained (i.e. to make possible the Fi deviation), ∑Fj, 
coming from the top, must deviate in Oi of δi, increasing the inclination angle 
from θi+1 to θi, and a thrust equal in value (but opposite in direction) to the Fi one 
must be applied (Fig. 3b): 

 ( )1
1 1

cot cot
n n

i j j i i
i i

H F F ϑ ϑ+
+ +

 
= − 

 
∑ ∑   (7) 
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     Because of the equilibrium of these two thrusts, it is possible that loads go 
from their application points to the imposts only by path in compression. 
     Eqn (7) analytically shows what Figure 3 exhibits graphically: the line of the 
‘possible’ (i.e. in equilibrium) load paths is strictly related to the intensity and 
distribution of loads Fi. 
     It is also possible to interpret the arch as the path of the thrust H (Fig. 4). In 
this case the travelling load H does not change (if every Fi is vertical). In every 
node the thrust path (from the impost to the crown) deviates of δi. This is 
possible (i.e. in equilibrium) because in every node Oi, the vertical thrust Vi 
(directed from the bottom to the top) of H is equilibrated by the load Fi which is 
equal in value but opposite in direction. 
 

 

Figure 4: The arch as path of the thrust. 

     A dome (Fig. 5) can be seen as a system of meridian arches joined by the 
parallel circles. 
     The arches draw the paths of the vertical loads while the parallel circles draw 
the paths of the unbalanced thrusts. 
     Differently from the arches, in a dome the equilibrium of the thrusts in every 
node is always possible because of the presence of the parallels. The difference 
Hp(Fi) between the thrust of Fi and that of ∑Fj, enters the parallel and find 
equilibrium thanks to the axial symmetry. 
     Figure 5 shows that the shape of a dome has a direct influence on the type of 
the path of the unbalanced thrusts. 
     At the top part of the dome the thrust of Fi is bigger than that ∑Fj for two 
reasons: firstly the deviation θi of Fi is larger than that (δi) of ∑Fj and secondly 
the intensity of ∑Fj is low. This implies that Hp(Fi) is centripetal and, 
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consequently, it generates a compression action in the parallel. Just the opposite 
happens at the bottom part of the dome. 
     However, the tensile forces towards the base are inadmissible for the above 
mentioned assumption of no-tensile strength. Actually two explanations of the 
dome equilibrium are possible: 

• the bottom tensile action is so low (because of the thickness of the dome) to 
be compatible with the masonry tensile strength; 

• due to the high tensile action the bottom part of the dome separates into 
‘slices’ divided by meridian cracks but equilibrium is maintained because 
every slice starts to behave like a two-dimensional arch. 
 

 

Figure 5: Paths of loads and thrusts in a dome. 

     Regarding the last consideration it is worth noting that many domes show 
precisely such meridian crack patterns [20]. A celebrated account was given by 
Poleni [21], who reported on the cracks apparent in the dome of St Peter’s 
Basilica in Rome, nearly 200 years after its completion. Starting from the 
observation that the cracks had already divided the dome into meridian slices 
(‘orange slices’), Poleni showed that the dome of St Peter’s Basilica was safe in 
its cracked state because he demonstrated that every slice, behaving like an arch, 
was in equilibrium. Even though Poleni concluded that the observed cracking 
was not critical, he agreed with an earlier recommendation that further encircling 
ties should be provided.  
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4 The masonry dome with no ring behaviour 

At the end of the last paragraph, it has been highlighted that, due to the high 
horizontal tensile action, the bottom part of many domes separates into ‘slices’ 
divided by meridian cracks but equilibrium is maintained because every slice 
starts to behave like a two-dimensional arch. 
     Starting from this consideration, in this paragraph, the shape of a dome that, 
with gravitational and symmetrical loads, can avoid the activation of the ring 
behaviour is searched. 
     Considering the arch in figure 6, if the origin of coordinates is taken on the 
crown, the equation of the arch centre line is y = y(x), the intensity of vertical 
load per unit horizontal length is q(x), the value of the horizontal component of 
the abutment thrust is H, then the equation of the centre line can be determined 
by solving the relation 

 
2

2

( )d y q x
Hdx

=  (8) 

 

 

Figure 6: Reference arch. 

     To pass from a two-dimensional problem (i.e. the arch) to a three-dimensional 
one (i.e. the dome) it is firstly necessary to transform the load per unit length q(x) 
into a load per unit area Q(x). If, at the abscissa x, B(x) is the width of an arch 
loaded by q(x), the load per unit area on the arch is  

 
( )
( )( )arch

q xQ x
B x

=  (9) 

     By analogy, the load per unit area on the dome, at the abscissa x, is 

 ( )( )
2
q xQ x

xπ
=  (10) 

and then 
 ( ) ( ) 2q x Q x xπ= ⋅  (11) 

240  Structural Studies, Repairs and Maintenance of Heritage Architecture XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 131, © 2013 WIT Press



     From eqns (8) and (11) it is possible to obtain the centre line equation of an 
arch that, by its rotation about the Y axis, generates the dome with no ring 
behaviour: 

 
2

2

1 ( )2d y Q x
x Hdx

π=  (12) 

     An important application is the case of a dome subjected to its own weight. If 
the dome has thickness t and unit weight ρ, then 
 
 ( )q x dx t dSρ⋅ = ⋅ ⋅  (13) 
where dS is the elementary area. 
     According to the first Pappus’s centroid theorem, the surface area S of a 
surface of revolution generated by rotating a plane curve γ of an angle α about 
the Y axis is 
 GS x lγα= ⋅ ⋅  (14) 
 

where lγ is the length of the curve γ 

 
2

0

1
x dyl dx

dxγ
 = +  
 ∫  (15) 

and xG is the abscissa of the centroid of γ 

 

2

0

2

0

1

1

x

G x

dyx dx
dx

x
dy dx
dx

 ⋅ +  
 =
 +  
 

∫

∫

 (16) 

     Substituting (15) and (16) into (14) and taking into account that in the 
examined case α=2π, it is possible to obtain  

 
2

0

2 1
x dyS x dx

dx
π  = ⋅ ⋅ +  

 ∫  (17) 

and then 

 
2

2 1dS dyx
dx dx

π  = ⋅ ⋅ +  
 

 (18) 

     Finally from (13) and (18) the vertical load per unit horizontal length is 

 
2

( ) 2 1 dyq x t x
dx

π ρ  = ⋅ ⋅ ⋅ ⋅ +  
 

 (19) 

     This equation could be directly obtained from (11) considering that in the 
case under question, if ds is the elementary length of the centre line, then 

 

( ) ( )

( ) ( )2 2 2

1

ds dsQ x Q s t
dx dx

dx dy dyt t
dx dx

ρ

ρ ρ

= = ⋅ =

+  = ⋅ = ⋅ ⋅ +  
 

 (20) 
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     From relations (8) and (19) it is possible to obtain the centre line equation of 
an arch that, by its rotation around the Y axis, generates the dome with no ring 
behaviour and subjected to its own weight: 

 
22

2

2 1d y t dyx
H dxdx

π ρ⋅ ⋅  = ⋅ ⋅ +  
 

 (21) 

Assuming g(x)=dy/dx, relation (21) becomes 

 
2

( ) 2

1 ( )

dg x t x dx
Hg x

π ρ⋅ ⋅
= ⋅ ⋅

+
 (22) 

that can be integrated obtaining 

 ( )( )
2

1
1

2sinh
2

− ⋅ ⋅
= ⋅ +

t xg x C
H

π ρ
 (23) 

and then 

 
2

1
2sinh

2
dy t x C
dx H

π ρ ⋅ ⋅
= ⋅ + 

 
 (24) 

where C1 is a constant. 
     Equation (24) has not a closed-form solution and then numerical methods are 
needed to find the centre line equation for the case under study. 
     Figure 7 shows the comparison between the centre line of a dome without 
ring behaviour, calculated by numerical integration of equation (24), and that of 
a hemispherical dome having span and rise equal to 60 m and 30 m respectively. 
The difference between the two lines clearly shows that in the hemispherical 
dome, ring behaviour is necessary for equilibrium to be maintained. 
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Figure 7: Comparison between the centre line of a dome without 
ring behaviour and that of a hemispherical dome (span = 60 m;  
rise = 30 m). 
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5 Conclusions 

In this study, starting from the interpretation of the arch behaviour, the Load Path 
Method has been used to analyse the behaviour of masonry domes. Moreover 
analytical relations to find the shape of the dome that, with gravitational and 
symmetrical loads, can avoid the activation of the ring behaviour have been 
obtained. 
     The aim of this work is to show that the Load Path Method can be an 
effective instrument to bridge the gap between engineers and architect because it 
seems to conciliate successfully the necessity to get a numerical solution without 
losing touch with the perception of the synthesis of physical structural behaviour. 
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