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Abstract 

A non-local damage model is proposed for brittle materials, such as masonry and 
concrete, starting from a previous proposal of the authors. The model is 
characterized by symmetric, second order damage tensors, which account for 
strain-induced anisotropy. Different laws are employed to describe the evolution 
of damage induced by tensile or compressive strains. The principal directions of 
damage remain fixed throughout any load history, and a non-rotating smeared 
crack model is obtained. The model overcomes some deficiencies of the previous 
local version, as damage at any point is computed according to the strain 
averaged over a suitable neighbourhood of that point, thus alleviating mesh-
dependency effects. The model is successfully applied to the analysis of three-
leaf walls tested to failure under different load conditions. 
Keywords: masonry, concrete, non-local damage, anisotropy, mesh sensitivity. 

1 Introduction 

The mechanical behaviour of most engineering rocklike materials, such as 
concrete and masonry, is basically brittle and is characterized by strain-softening 
in the post-peak regime; this is especially true as far as the tensile behaviour is 
concerned. Strain-softening is the macroscopic manifestation of the 
microfracturing process that any material element experiences under increasing 
deformation. Microcrack coalescence leads to formation of macrocracks, and 
eventually failure of the material element occurs. Fracture mechanics and 
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damage mechanics are both theories which try to describe the mechanical 
behaviour of solids beyond the onset of the cracking process. Unlike fracture 
mechanics, which tracks individual cracks, damage mechanics focuses on 
‘smeared’ crack models, thus avoiding computationally heavy re-meshing 
procedures. This is the approach followed in this paper. 

As microcracks appear in a rocklike material element, an induced anisotropy 
arises even in solids which are macroscopically isotropic at the original 
(undamaged) state. According to Kachanov [1], the effective elastic properties of 
the damaged material can be regarded as orthotropic with good accuracy. The 
constitutive model proposed by the authors and recalled in Sec. 2.1 relies on the 
assumption of damage-induced orthotropy. 

A drawback of damage models is that, if any region exists in the body where 
the strain field localizes, damage localizes as well (see, e.g., [2]). In this case, the 
finite element results are strongly mesh dependent, and an unrealistic mechanical 
behaviour is described. Mesh-sensitivity effects are usually reduced assuming 
that damage is spread within a region (or ‘process zone’) whose size is supposed 
to be a material property [3]. The ensuing models are generally known as ‘non-
local damage models’. 

The paper layout is as follows. First, in Sec. 2.1 the local damage model 
originally formulated by the authors is recalled. Then, the procedure proposed to 
make the model non-local is outlined (Sec. 2.2). Some numerical applications of 
the non-local damage model, implemented in two finite element codes, are 
shown in Sec. 3 with reference to available experimental tests on masonry walls. 
Finally, some critical remarks on the model are made in Sec. 4 and further 
developments of the research are outlined. 

2 Anisotropic damage model 

2.1 Original (local) model 

To analyze masonry or concrete buildings and structural elements, a damage 
model was proposed which is briefly recalled here; readers are referred to the 
original paper [4] for further details. At the original (undamaged) state, any 
material element is supposed to be isotropic, linearly elastic: the Young’s 
modulus and the Poisson’s ratio of the material are denoted by E and ν, 
respectively. The damage phenomena are macroscopically taken into account 
through a symmetric, second-order tensor D; accordingly, the damaged material 
is, in the most general case, orthotropic. In finite form, the nonlinear stress-strain 
law of the material reads: 

 ε = C(D):σ (1) 

where C = the fourth-order flexibility tensor of the damaged material. The 
eigenvalues and the normalized eigenvectors of the damage tensor will be 
denoted by Dα and nα (α = I, II, III), respectively. Any one of the planes of 
damage-induced orthotropy is somehow associated to a plane microcrack that 
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forms in the solid. Once any damage direction is activated, its orientation is 
supposed to remain fixed throughout the rest of the stress history. 

The damage process driving variable is supposed to be an equivalent strain 
measure, y = ½ε2. As the maximum eigenvalue of y attains a critical value (y0T or 
y0C, according to the sign of the associated strain), the first damage direction (nI) 
is activated. An additional damage direction, nII, can activate in the plane 
orthogonal to nI if the maximum direct component of y, that is, yhh = nh⋅(y⋅nh), 
with nh ⊥ nI, attains the damage threshold. The third possible damage direction is 
necessarily nIII = nI ∧ nII. 

Neglecting creep-induced damage, each principal value of the damage tensor 
is supposed to evolve according to a law similar to that presented in [4] for 
concrete: 
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Here, 〈*〉 are McAuley brackets and AH, BH and CH are material parameters, 
which take different values according to the sign of the strain component that 
activates damage (H=T for tension; H=C for compression). 

Note that permanent (plastic) strains are disregarded in the proposed version 
of the model. Also, crack-closure effects (that is, the recovery of stiffness upon 
closure of an existing crack due to a stress reversal) are neglected. These are not 
deemed to be serious limitations as far as the model is applied to the simulation 
of tests involving monotonically increasing loads or displacements. 

The proposed numerical model was implemented in two finite element codes 
(ABAQUS® and FEAP), which are both endowed with an interface to allow 
users to incorporate their own constitutive law. The codes were applied to the 
simulation of experimental compression tests on four types of masonry prisms. 
The prisms either consist of mortar embedding aggregates of irregular shape or 
are made of stone blocks alternated with thin mortar joints. Two types of stone 
were employed: a sandstone tuff (‘Noto’ stone) and a medium-grained sandstone 
of very low porosity (‘Serena’ stone). Details on the average mechanical 
properties of the prisms and the experimental results can be found in [5]. In the 
numerical analyses, each prism was discretized by isoparametric 8-node “brick” 
elements. The base of the prisms is either fully restrained or simply supported.  

The numerical results are shown in Figs. 1 and 2, which refer to prisms in 
Noto stone and Serena stone, respectively, and compared with the experimental 
ones. The numerical response matches the test data quite well if strains are 
homogenous (simply supported prism). Conversely, an excessively abrupt drop 
in bearing capacity is predicted if the base is fully restrained, as a consequence of 
the non-homogeneity of the strain field. This behaviour is typical of ‘local’ 
damage models, as the one employed so far: if any region exists in the body 
where the strain field localizes, damage localizes as well. The finite element 
results are strongly mesh dependent, and an unrealistic mechanical behaviour is 
described. A proposal to avoid this phenomenon is made in the following 
section. 
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Figure 1: Experimental and numerical results for compression tests on prisms 
in Noto stone: (a) mortar and aggregate; (b) blocks alternated with 
mortar joints. 
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Figure 2: Experimental and numerical results for compression tests on prisms 
in Serena stone: (a) mortar and aggregate; (b) blocks alternated 
with mortar joints. 

2.2 Nonlocal model 

In stress analyses involving damage models the consistent damaged tangent or 
secant matrix is evaluated considering the local strain, that is, the strain at an 
integration point in FE analyses. However, for problems in which the strain field 
is not constant and the material exhibits strain softening, this leads to spurious 
results and strong mesh sensitivity (see e.g. [6, 7]). Typically, the inelastic strains 
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are concentrated in narrow bands, whereas the major part of the structure is 
nearly unstrained. This is illustrated in Figs. 8(a) and 9(a), where meshes with 
elements of the same height before loading are shown after deformation: strains 
are apparently localized in some elements, or rows of elements. 

In this paper, the non-local procedure implemented in the finite element code 
FEAP is based on an integral-type procedure. The local strain is replaced by a 
weighted average of the strain field: 
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where εa is the average strain at the current point x, f(x-xs) is a weighting function 
that depends on the distance from x to xs, ε(xs) is the strain at any source point xs, 
and V is the volume of the defined neighbourhood. 

The weighting function is often taken as [7, 8]: 
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where λ is the internal length of the non-local neighbourhood, i.e., the diameter 
of a sphere centred at x. The value of λ to be employed in non-local damage 
models is not a trivial choice. For concrete, there is a certain agreement upon 
taking three times the diameter of the largest aggregate [9]. No indication was 
found in the literature for brick or block masonry, so that the choice made in the 
numerical applications shown in Sec. 3 (λ = 100 mm for Noto stone and 60 mm 
for Serena stone) is quite arbitrary. This point is left to be addressed in the 
continuation of the research. 

There are a few basic requirements that the averaging procedure has to meet. 
First, the local strain has to be replaced by the average strain only when the 
material is actually damaged or the results in the elastic range could be incorrect. 
Secondly, the model should give a realistic response even in simple loading 
situations, such as uniaxial tension or compression. Then, being the strain field 
constant, the stresses should be constant as well. 

In finite element analyses, strains and stresses are usually evaluated at the 
integration (usually, Gauss) points. Accordingly, at any Gauss point xi eqn. (3) is 
approximated by: 
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where ω(xj) is the integration weight at the Gauss point xj and J(xj) is the 
Jacobian of the isoparametric transformation at xj. 

As FEAP detects that damage is activated at any Gauss point, a routine is 
called in order to identify the elements that have the centre within the non-local 
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neighbourhood. The routine gets the local strains evaluated by the routines of 
FEAP, and returns the non-local strains according to eqn. (5), which is used to 
compute the secant matrix. There are two options for the weighting function. The 
first one is eqn. (4); the second one is f = 1 (constant), which means to perform 
an arithmetic averaging over the neighbourhood.  

It is worth to emphasize that the non-local strains are used only to evaluate 
the stiffness matrix. The stresses are computed according to the local strains, as 
they must be compatible with the real displacement field. 

3 Numerical applications and comparisons with experiments 

In this section some numerical simulations of experiments on three-leaf masonry 
wallettes tested in the laboratory are shown. Details on the specimens and the 
tests can be found in [5]. The outer leaves are made of stone blocks (Noto or 
Serena stone, see Sec. 2.1) alternated with thin mortar joints; the inner leaf is 
made of mortar embedding irregular pieces of the same stone that constitutes the 
outer leaves. Some wallettes had flat collar joints between the leaves, whereas 
other had keyed collar joints. Both compression and shear tests were performed. 
In compression tests, the lower base of the wallettes is restrained, and the top 
undergoes uniform increasing displacements. In shear tests, the base of the outer 
leaves is restrained, and the top of the inner leaf is moved downward.  

In the continuation, compression tests on wallettes with flat collar joints 
will be labelled ‘Type 1 tests’; compression tests on wallettes with keyed collar 
joints will be labelled ‘Type 2 tests’; shear tests on wallettes with keyed 
collar joints will be labelled ‘Type 3 tests’. 

The finite element mesh employed in the numerical analyses consists of 2880 
eight-node isoparametric ‘brick’ elements. Only one quarter of the wallettes was 
discretized, accounting for symmetry boundary conditions at the vertical mid-
planes. Each leaf was assumed to be homogeneous and the mortar joints were 
neglected. Perfect bonding is assumed at the collar joints. The external leaves 
were given ‘average’ mechanical properties derived from tests on the individual 
leaf (see also Figs. 1 and 2). The model parameters employed in the analyses are 
summarized in Table 1. The leaves are assumed to be perfectly bonded, except 
for one of the analyses (see ahead).  

In Figs. 3, 4 and 5 experimental and numerical load-displacement curves are 
compared, for tests type 1, 2 and 3, respectively. The origin of the numerical 
plots was shifted to discard the initial stage of the laboratory tests, where an 
adjustment takes place between machine platens and specimens. The numerical 
results obtained with the local version of the damage model were already 
presented in [6]. 

In the simulation of the tests on the specimen in Noto stone both FEAP and 
ABAQUS predict the peak load and the corresponding displacement with fair 
accuracy (Fig. 3(a)). Regarding the post-peak softening behaviour, however, 
only FEAP, where a non-local damage procedure is implemented, yields good 
results; on the contrary, ABAQUS, in which the local damage model is 
implemented, predicts an excessively brittle response. For Serena stone the 
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results are not conclusive, as the specimen did not fail during the test: the 
relevant load-displacement plot does not exhibit any significant non-linearity 
(Fig. 3(b)).  

Table 1:  Model parameters employed in the FE analyses. 

Noto stone Serena stone   outer leaf inner leaf outer leaf inner leaf 
FEAP 2200 1100 3800 1300 E 

(MPa) Abaqus 2500 1800 3800 1875 
ν FEAP/Abaqus 0.15 0.15 0.15 0.15 

FEAP 0.001 0.001 0.1 0.0001 y0C Abaqus 0.5E−6 0.5E−6 0.5E−6 0.5E−6 
FEAP 6.68E+6 1.78E+6 23.42E+6 0.545E+6 AC Abaqus 0.34E+6 0.30E+6 1.0E+6 0.50E+6 
FEAP 1.27 1.2 1.5 1.2 BC Abaqus 1.2 1.11 1.3 1.2 
FEAP 2.8 2.0 6.0 1.05 CC  Abaqus 1. 1. 1. 1. 

 

 
(a) (b) 

Figure 3: Load-displacement plots for Type 1-tests: (a) Noto stone, 
(b) Serena stone. 

Similar remarks apply to the simulation of Type 2 tests (Fig. 4). For Serena 
stone, the local damage model implemented in ABAQUS predicts a peak load 
which is not matched by the experimental plot, as the specimen did not fail 
during the test; this is not the case with FEAP (see Fig. 4(b)). 

Finally, regarding Type 3 tests (Fig. 5) FEAP overestimates the peak-load for 
specimens both in Noto and Serena stone. Also, both codes overestimate the 
stiffness of the specimens in Serena stone (Fig. 5(b)). Both results are likely to 
be due to the assumption of perfect bonding at the collar joints. Indeed, the 
bonding between stones and mortar is negligible, as indicated by the separation 
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of the leaves which took place in the tests at very low load values [5]. To check 
the validity of this assumption, a numerical analysis was performed with 
ABAQUS assuming a Coulomb’s-type law at the collar joints (friction coeff. = 
0.866). The results are shown in Fig. 5(b): note that, whereas the stiffness of the 
specimens is correctly matched, the peak load is definitely underestimated, 
indicating that the interfacial cohesion cannot be completely neglected. Thus, it 
would be extremely important to employ an interface element to correctly take 
the imperfect bonding between the leaves into account. 

 

(a) (b) 

Figure 4: Load-displacement plots for Type 2-tests: (a) Noto stone, 
(b) Serena stone. 

 

 
(a) (b) 

Figure 5: Load-displacement plots for Type 3-tests: (a) Noto stone, 
(b) Serena stone. 

Figures 6 and 7 show the contour plots of the axial stress (in MPa) obtained 
in the post-peak regime for specimens in Noto stone subjected to type 1 test and 
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for specimens in Serena stone subjected to type 3 test, respectively. The plots are 
drawn on the deformed FE meshes. When the local model is employed, damage 
(and strains) localize either in a strip of elements (Fig. 6(a)) or just below the 
loaded side of the model (Fig. 7(a)), which makes the numerical solution 
strongly mesh-dependent. The use of the non-local damage model definitely 
regularizes the obtained deformation mode (see Figs. 6(b) and 7(b)). Note, 
however, that in type 3-tests the experimental crack pattern, which mostly runs 
along collar joints [5], is not matched by the numerical predictions. 
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(a) (b) 

Figure 6: Type 1-tests on walls in Noto stone: contour plots for the axial 
stress in the post-peak regime and deformed mesh obtained with 
the local (a) and the nonlocal (b) damage model. 

 

4 Concluding remarks and future perspectives 

The use of a non-local damage model allows the bearing capacity and the post-
peak response of several masonry specimens tested in the laboratory to be 
captured with fair accuracy. This could not be achieved with the original (local) 
version of the proposed damage model, as a consequence of the localization of 
strains and damage in a band of finite elements. The non-local procedure 
prevents such localization and alleviates the mesh-sensitivity of the numerical 
results. 

Future developments of the research will be addressed to the formulation of 
brittle interface elements, to allow for failure modes involving the collar joints: 
this was the dominant failure mode observed in the shear tests on the three-leaf 
walls considered in Sec. 3. Finally, as the proposed model is aimed at the safety 
assessment of historical massive masonry buildings, creep-induced damage will 
also be taken into account in order to predict possible structural failures under 
sustained loads of high intensity. 
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Figure 7: Type 3-tests on walls in Serena stone: contour plots for the axial 
stress in the post-peak regime and deformed mesh obtained with 
the local (a) and the nonlocal (b) damage model. 
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