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Abstract 

In this paper the stability condition of uniform cantilevered masonry piers, 
subjected to eccentric concentrated load, is investigated, considering materials 
with nonlinear (parabolic) stress-strain law under compression. The analytical 
solution is obtained by integrating the nonlinear differential equation of the 
deflection curve using the Taylor series method. Depending on load intensity, on 
the height-to-depth ratio and initial eccentricity of the applied load, a column can 
fail owing to elastic instability or because the masonry at the fixed section has 
attained, or exceeded, the allowable compressive or tensile stress. 
Keywords: masonry, piers, instability, nonlinear constitutive law, Taylor series. 

1 Introduction 

The stability study of panels and columns under eccentric compression requires 
an accurate knowledge of the material’s constitutive law, which is generally 
nonlinear.  The experimental results reported in the literature (Powell and 
Hodgkinson [1], Priestley and Elder [2], Naraine and Sinha [3], Pume [4], 
Mojsilović [5]) and the various deformation curves that have thus far been 
adopted in theoretical studies of instability (Frish-Fay [7], Sawko and Rouf [8], 
La Mendola and Papia [9], Mura [10, 11]) differ to a certain extent. 
     One model realistically describing the behaviour for concrete is given in a 
standardised material law in Eurocode2 [6]. This law simulates two behaviour 
limits for the material: elastic and rigid-plastic. Schematising the constitutive law 
with a second-degree parabolic trend, where the vertex corresponds to the 
maximum strength value, appears to be the most generalized approach. Indeed 
this schematization describes the behaviour of brick and concrete walls [1, 2] and 
will thus be used in the present study. 
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     As a preliminary, the stress and strain distribution are derived for a 
rectangular uncracked section, assuming a nonlinear (parabolic) stress-strain law 
under compression and that the plane section remains plane after deformation. 
The curvature is then derived in closed form. Pier equilibrium is then formulated 
in the deformed state, taking into account the effect of deflections on bearing 
capacity.  
     The analytical solution is obtained by integrating the nonlinear differential 
equation of the deflection curve by means of the Taylor series method (see 
Agnew [12] ). 

2 Symbols 

The symbols used have the following meaning: 
b width of masonry wall or pier cross section; 
t thickness of masonry wall or pier cross section; 
L height of masonry wall; 
e0  initial eccentricity of axial load; 
eII added second-order eccentricity of axial load; 
e overall load eccentricity ( e = e0+ eII ); 
N axial action; 
N0 axial failure with centred load (N0 = σm b t ); 
A,B       parameters characterizing stress-strain state in a section under 

predetermined load conditions; 
ε longitudinal strain produced by normal stress; 
εm maximum allowable longitudinal strain under normal stress; 
σ normal compression stress; 
σm  maximum allowable normal compressive stress; 
η transversal deflection of masonry pier at the top; 
λ slenderness of masonry pier or panel (λ=2L / t). 

3 Theoretical premises 

For the material under compression the curve σ =σ (ε) represented in figure 1(a) 
of the dimensionless equation is adopted: 
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neglecting the material’s tensile strength. The latter assumption is clearly 
conservative for the purpose of safety evaluation. This is amply justified by 
experimental evidence, which shows tensile strength of non-reinforced masonry 
to actually be quite small compared to compression strength and by semi-
analytical studies [7] on the phenomenon of elastic instability of non-reinforced 
masonry, which have shown critical load to be little influenced by tensile 
strength. 
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     Experimental evidence has shown that once the peak of coordinates σm and εm 
has been attained, the curve begins to descend. The softening behaviour, not 
experimentally determined with any certainty, will be neglected in this study 
since it is not essential for determining loads of elastic instability where 
relatively small stresses occur. 
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Figure 1: (a) Constitutive law of the masonry; (b) Fixed end column with 
vertical load N. 

     Figure 1(b) shows the structure studied, consisting of a pier subjected to 
eccentric compression, fixed at the base and free at the top, having a rectangular 
section of width b and thickness t. Geometric eccentricity e0 (the sum of intended 
and accidental eccentricities resulting) is assumed constant along the structure’s 
axis. 

4 Stress-strain state for the section  

To determine the distribution of stress σ  and strain ε  through a section, we 
consider a pier element of infinitesimal height dz and dimensions b and t 
subjected to a load N acting with eccentricity e in figure 2.  
 
 

b

t

x

x

t/2 t/2

x

N

O

e

dl

dz/Rdz

(a) (b)

 
 

Figure 2: Stress and strain distribution in uncracked section. 
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     Since the principle of conservation of plane sections is admitted, by imposing 
equilibrium conditions with vertical translation and rotation, we can write the 
system of nonlinear equations that rigorously solves the problem [10]. Let us 
consider the reference system O(x, ε) with origin at barycentre of the section. 
The following functions describe the stress and strain behaviour:  

 
   ))(1()( BxAx m +⋅−= εε      (2) 

 ))(1()( 2BxAx m +⋅−= σσ             (3) 
 
Curvature l/R and axial shortening dl of the pier element are given respectively 
by the expressions: 
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The parameters A and B are given by: 
 

        











+−−−−=

t
e

N
N

N
N

t
e

N
N

N
N

t
A

0000
3213213   (6) 

       











+−+−−=

t
e

N
N

N
N

t
e

N
N

N
NB

0000
321321

2
1    (7) 

 
     For each assigned pair of values of dimensionless axial load N/N0  and load 
eccentricity e/ t  (so as to respect the non-cracking conditions of the section that 
will be given later and to avoid exceeding allowable tension), we can calculate 
parameters A and B using Eqs (6) and (7), which when introduced into Eqs (2), 
(3), (4) and (5) fully describe the stress-strain state of the material. 

5 Crack and failure conditions in the masonry section 

Crack conditions of the section for materials with a nonlinear elastic constitutive 
law depend on both eccentricity e of load N (as is the case with materials having 
linear behaviour) and on load intensity. Condition ε (- t /2) = 0, expressed by 
means of equation (2), defines the crack initiation condition. Taking into account 
equations (6) and (7), which give A and B, after appropriate simplifications we 
arrive at a nondimensional second-degree equation that yields the limit load 
(N /N 0) f  as a function of eccentricity e / t . After discarding the trivial solution, 
we get: 
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Regarding failure conditions, let us consider separately the two cases of an 
uncracked and cracked section. Referring to equation (3), obviously we must set: 
σ ( t /2)=σ m . Taking into account equations (6) and (7), after appropriate 
simplifications we arrive at: 
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For the cracked section it has been shown [10] that the crushing failure load 

of the material is correlated with eccentricity by means of: 
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6 Analytical method  

Let us consider the masonry pier fixed as in figure 1(b). For studying the stability 
of similar slender unidimensional elements we need to take into account two 
distinct kinds of nonlinearity. On the one hand mechanical nonlinearity, 
originating from the material’s constitutive law, on the other, geometric 
nonlinearity derived from second-order effects (increases in load eccentricity due 
to element deflection). The differential equation for the deflection curve is given 
by: 

         
R

eNw ⋅
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where R is flexural rigidity, which varies along axis z as eccentricity e varies. For 
each pier section the findings of the author’s earlier studies hold true, so long as 
eccentricity e/t is substituted with  (e0+eII)/t where, as we can see in figure 1(b), 
we have e I I  =η  -w .  

The differential equation (10) of the deflection curve is rewritten as follows: 
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6.1 Buckling calculation for centred load  

For centred load (e0 / t  = 0) if we simply want to determine the numerical value 
of the buckling load, then we observe that under critical equilibrium conditions 
the inflected configurations are infinitely close to the straight ones. If we 
consider the quantity (η -w)/ t  in equation (11) to be infinitesimal, we can expand 

Structural Studies, Repairs and Maintenance of Heritage Architecture X  483

 © 2007 WIT PressWIT Transactions on The Built Environment, Vol 95,
 www.witpress.com, ISSN 1743-3509 (on-line) 



the roots on the right hand side in the Taylor’s series. Truncating at the second 
term yields, after rearrangement: 
 

  ηαα ⋅=⋅+ 22'' ww  (12) 
where: 

  

0

02

1

6

N
N

Nt
Nm

−

⋅
⋅⋅

=

ε

α   (13) 

 

Studying the above differential equation (12) does not present any 
difficulties. We arrive at the well-known expression: 
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obtaining the smallest value of the critical load for k = 0.  From equation (14) we 
deduce:  
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Equation (15) coincides with the well-known Engesser critical load formula 
(the tangent-modulus theory of buckling load) for the column built with material 
having nonlinear elastic behaviour whose constitutive law is expressed by 
equation (1). 

6.2 Integration by Taylor series method  

The differential equation (11) is a classic second order non-linear Newton 
equation of the type w" = g(w). Finding the general integral in closed form 
proves extremely difficult because of the complexity of the functions contained 
in the second term. Approximate solutions can be obtained by means of the 
integration method, which uses Taylor series expansion. 

Considering the origin of the reference system O as the starting point for the 
expansion  (z = 0), we get: 
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The first two coefficients can be immediately deduced, taking into account that 
at the origin the deflection and the tangent should be zero.  We set:  
 
                      0)0( =w  (17) 
                      0)0(' =w   (18) 
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Taking into account equations (17) and (18), it is easy to deduce the third 
coefficient of the Taylor series expansion from equation (16). Assuming: 
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we obtain: 
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The fourth and subsequent coefficients can be obtained further deriving from 
equation (16) with respect to the variable z and considering that after each 
derivation the values of the coefficients previously calculated can be substituted 
into the right hand side. Thus we get: 
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and so forth. 
The load-deflection response diagram can be obtained from equation (16), 

introducing the coefficients calculated above. Truncating the series at the third 
significant term and assuming: 
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considering that w(L)=η   and having introduced slenderness λ  = 2L / t  we get: 
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with K3, K4 and K5  given by the following further positions: 
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7 Numerical results 

We can study equation (27) for the two cases of centred load (e0 / t=0) and load 
with small eccentricity (e0 / t≠0).  

For the centred load we can write: 
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with C14, C12,…C0, polynomials of N/N0.  

Equation (31) (also referring to figure 3, determined for exemplary purposes 
assuming λ = 15  e  εm = .004) can be readily interpreted. The quantity not 
enclosed in square brackets leads to the dual solution η / t  = 0, which determines 
column straightness and identifies the (ascending) path of the stable equilibrium 
points. The (descending) path of the unstable equilibrium points can instead be 
derived from the square bracketed expression, set equal zero. This is obtained by 
means of a numerical procedure and is given by the curve that identifies the 
smallest actual values of N/N0  for predetermined η / t . 

The load at which critical equilibrium is reached is obtained as the point of 
intersection between the stable equilibrium and the unstable equilibrium paths.   

Setting η / t=0 in the square bracketed expression in equation (31) and 
equating the coefficient C0 to zero, the smallest actual value of N/N0  is given by: 
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Figure 3: Load-deflection response diagrams with slenderness λ=15 for 
some values of dimensionless eccentricity e0/ t . 

 
For the case of small eccentricity we used a numerical procedure for studying 

equation (27), obtaining curves of the type shown in figure 3. Here we can 
readily identify both the ascending path of stable equilibrium, the descending 
path of unstable equilibrium as well as the point of critical equilibrium 
separating the two, which coincides with the critical load. The curves plotted in 
figure 3 are physically meaningful only in the safe zone for the section subjected 
to the greatest stress (the fixed section, at the base), which is delineated by the 
material’s crack and crush curves. When the ascending portion of the stability 
curves intercepts the crack or crush curves, the limit state to be considered is 
precisely that at which cracking or crushing occurs.   

In figure 3 the representative load shown on the y-axis is the 
nondimensionalized load N/N0. The representative deflections shown on the x-
axis are also nondimensional (η+e0 ) / t  and determine the sum of initial load 
eccentricity and deflection at the pier top. Finally, the reference condition is the 
unloaded pier with no deflection. 
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Table 1:  Comparison of buckling loads for some values of slenderness λ. 

 
λ 

buckling load using 
 Taylor series   

(32) 

buckling load using 
Engesser solution 

(15) 

Error % 

100x
)15(

)15()32( −  

5  .9963230 .9963313 - .00083 
10 .9468646 .9469278 - .01143 
15 .8053838 .8056813 - .03692 
20 .6270964 .6274827 - .06156 
25 .4758301 .4762014 - .07796 

 
As using three significant terms makes the variables N/N0   e η / t  in both 

equation (27) and in the square bracketed expression of equation (31) very large, 
we determined the postbuckling curves in figure 3 numerically, using a simple 
automatic calculation program.  

For predetermined values of η / t  we first discretized the nondimensionalized 
load N/N0 ,  identifying the steadily increasing values from zero upward. We 
then calculated the value of the function at those points, finding the next two 
load values at which the function changed sign. After obtaining the buckling load 
interval, the bisection method was applied thereto to accurately compute the 
buckling load for which the function value is zero.  

Table 1 shows the comparison between instability loads for centred loads, 
obtained using equations (15) and (33) for typical column slenderness values. As 
can be observed, the differences are minimal and the approximate solution 
obtained by means of Taylor expansion practically coincides with the exact 
solution determined with the tangent-modulus theory.       

6 Conclusions 

We have analytically investigated the stability condition of uniform cantilevered 
masonry piers subjected to an eccentric concentrated top load, considering 
material with nonlinear (parabolic) stress-strain law under compression.  

Depending on load intensity, height-to-depth ratio and initial eccentricity of 
the applied load, a column can fail owing to elastic instability or because the 
masonry at the fixed section has reached, or exceeded, the allowable 
compressive or tensile stress. 

The proposed approach yields practically the same results as the exact 
solution and can be utilized to evaluate the safety condition of masonry bearing 
walls, such as those in buildings of historical or architectural interest. 
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