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Abstract 

It is well known that instrumented indentation tests are useful tools in probing 
mechanical properties of materials such as metals and ceramics. Instrumented 
indentation of hyperelastic materials such as rubbers, bio-materials, tissues etc. 
has not been examined in depth, especially the inverse problem of material 
characterization from instrumented indentation response. The difficulty of the 
inverse problem for such materials is that the unknown property is a function, the 
elastic energy density function. There are several such functions and each 
function is often characterized by more than one parameter. If the maximum 
indentation depth is low, we have shown that instrumented indentation of 
initially unstretched hyperelastic materials can only resolve a combination of the 
material parameters. If the maximum indentation depth is high, the indentation 
can provide independent material properties, however not in a unique way. 
Moreover, high indentation loads could lead to surface puncturing and so blur 
the test results. In this work, we show that we can use spherical indentation of a 
substrate at different but known prestretch levels to obtain the involved material 
properties of the energy density function. The present methodology can also 
incorporate a limit energy failure criterion and instrumented indentation can 
incorporate this behavior which we may call indentation strength. 
Keywords: instrumented indentation, hyperelasticity, prestretching, property 
extraction. 

1 Introduction 

In recent years, instrumented indentation has been used to estimate residual 
stresses and residual strains of elastoplastic materials. Important analysis has 
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been conducted for equal-biaxial stress fields in the context of sharp indentation 
tests (see for example Bolshakov et al. [1], Suresh and Giannakopoulos [2]) and 
for general biaxial stress fields (see for example Giannakopoulos [3], Lee and 
Kwon [4], Bocciarelli and Maier [5], Larsson and Blanchard [6]). Important 
studies were also conducted for the influence of residual stresses to spherical 
indentation (see for example Swadener et al. [7] and Huber and Heerens [8]). We 
should point out that this prior work is focused on how to obtain residual stresses 
and strains from instrumented indentation. The present work suggests a reverse 
methodology: obtaining material properties with the help of residual strains. 
Although we will concentrate mainly on hyperelastic materials, the present ideas 
could be useful for the elastoplastic materials, breaking the often encountered 
“lack of uniqueness” of elastoplastic material constants (see for example Chen et 
al. [9]. Non linear finite element analysis was applied by Chang and Sun [10] to 
(frictionless) spherical indentation of an Ogden type hyperelastic half-space. The 
general form of the Ogden’s strain energy function is: 
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where i  3,2,1i  define the principal values of the stretch tensor and k , 

ka  are material constants. In the case of infinitesimal strains, the Ogden material 

behaves as an incompressible linear material with shear modulus G (and elastic 
modulus E) 
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     The neo–Hookean material model is a special case of one-term Ogden 

model  2,1 1  am . The Mooney–Rivlin material is a two-term Ogden 

model  2,1,,2,2  kCam kkk  . 

     Chang and Sun [10] found that for a ratio of indentation depth/ball radius 
( Rh / ) up to 0.29, the load-indentation ( hP  ) depth relation is approximated 
well by the classic Hertz solution: 
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     This hP   result was found to be independent of other material parameters. 
Similar results have been found for the case of a flat punch and the cone punch 
for an extensive variety of strain energy functions (Giannakopoulos and 
Panagiotopoulos [11], Zisis et al. [12]). It is of interest to note that this lack of 
uniqueness of the P–h curve has been also observed in the analysis of 
elastoplastic indentation by sharp indentors. In a most recent and extensive work 
on this subject, Chen et al. [9] came up with a whole class of elastoplastic 
materials that show the same hP   curves. 
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     Spherical indentation of soft matter, beyond the Hertzian regime has been 
investigated numerically using hyperelastic models by Lin and Chen [13]. They 
found that Hertz solution applies for 2.0/ Rh , with the relation between the 
contact radius a, the ball radius R and the indentation depth h as 

Rah /2 .                                                    (4) 

For 2.0/ Rh , their results do not follow Hertz solution. 
     Green et al. [14] have investigated the flat punch problem of an initially 
isotropic hyperelastic substance under equal-biaxial finite deformation. Woo and 
Shield [15] investigated the semi-infinite media in biaxial extension with a 
superposed force normal to the boundary. Equibiaxially stressed neo–Hookean 
half-space indented by a punch of arbitrary axisymmetric profile has been 
investigated by Dhaliwal et al. [16] and for general hyperelastic (isotropic) 
bodies by Beatty and Usmani [17]. Karduna et al. [18] performed finite element 
analysis of a Mooney–Rivlin type of rubber under equal-biaxial stretching and 
confirmed the theoretical predictions of Humphrey et al. [19]. 
     Using the incremental theory of Biot [20] and the potential theory, the results 
can be extended for the indentation by any smooth axisymmetric indenter. The 

ah   relation is given by the linear elastic solution and the hP   relation 
admits an overall correction that depends on the amount of the initial biaxial 

stretch r . For a neo–Hookean material, the finite tensile stretching makes it 

harder to deform under indentation. 
     It is clear that extracting hyperelastic material properties from indentation 
tests is very complex. It fails to provide reliable and unique results, unless for 
high indentation depths. However, high indentation depth can cause damage of 
the material, especially for soft tissues. In this work we will explore the 
indentation method in combination with prestretching, in order to extract 
hyperelastic material properties. 

2 Initially isotropic, incompressible hyperelastic materials 
under equal-biaxial stretching 

In this work, we will focus on initially isotropic, incompressible hypereleastic 
materials. These materials are described by an elastic energy density of the form 

 21 , IIWW                                                     (5) 
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incompressibility condition 1321   ( 321 ,,   are the principal 

stretches). We will further assume that an elastic substrate, as described above 

has as initial equal-biaxial stretching along the coordinate system  zyx ,, , as 

shown in fig. 1, with principal stretches in the radial direction r ,   21  

and in the normal direction z , 2
3 /1   . Therefore, 42
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24
2 2  I . On such substrate, we impose a rigid spherical indentor of 

radius R, that indents the surface with a normal load P. Green et al. [14] have 
solved the problem analytically, assuming that the deformation due to 

indentation is small. The result for the force-depth  hP   relation and the 

contact radius-depth  ha   relation for the case of frictionless and 

adhesionless contact are 
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where E is the initial elastic modulus for the uniaxial case. The above results are 
similar to the classic Hertzian case, except for the factor x which is a function of 
  and of the material constants, and is given explicitly by the relation 
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     Clearly, for the unstretched case, 1  and   11 x .  

     Note also that other type of rigid axisymmetric punches (flat circular, cone, 
etc.) follow the classic solutions of Harding and Sneddon [21] with the 

substitutions: 2/1v  (incompressibility),   x  (stretching 

influence). The indentation is assumed to be performed relatively fast, to avoid 
viscoelastic effects, e.g. Martinez-Martinez and De Hosson [22]. 
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Figure 1: A spherical indenter is pushed by a force P into a hyperelastic 
substrate up to a vertical displacement h.   is the contact radius 

and R  is the radius of the sphere, 1 /ru L   . 

     The case of the Mooney–Rivlin model is described by  

   33 2211  ICICW                                    (12) 

where 21 ,CC   are material parameters and   06 21  CC . In this case  
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     For the particular case of a Neo-Hookean material 2 10,   6C C   . Note 

that eqn. (13) suggests that for 1 ,   1x (and for 1 ,   1x ) 

indicating a stiffening effect of the biaxial tension. Also  x  is linearly 

increasing with respect to  211 / CCC  , since   1/0 211  CCC . From 

fig. 2 we can observe that we will need a prestretch 5.1  in order for x  to 

differ significantly from 1. This is because as   1/ 211 CCC , then   x  

tends to the Neo-Hookean result, (i.e. 02 C , and in this case  x  does not 

deviate much from 1 for 5.11   . 
     At this point, we can make a very important observation. An instrumented 

indentation test of an unstretched Mooney–Rivlin surface  1  is likely to 

provide the value of   216 CC  , but not the independent material 
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Figure 2: The variable  x  for the Mooney-Rivlin material. We also show 

the proposed methodology, as applied to the Mooney-Rivlin 
material. Step 1: Perform instrumented indentation for 1  

(unstretched substrate). Evaluate E  from hP   experiments and 

so evaluate 6/21 ECC  . Step 2: Perform instrumented 

indentation for 1  (known equal-biaxial stretch). Evaluate the 

 Ex   from hP   experiment and therefore,  x . From the 

analysis   and  x  define a point corresponding to a district 

value of  211 / CCC  . Step 3: From 21 CC   and 

 211 / CCC   estimate uniquely 1C  and 2C  separately. 

 

constants 21 ,CC  (unless for the Neo–Hookean material). If, however, we 

perform additional indentation tests with different levels of pre-stretch  , then 

the values of  x  could provide sufficient conditions to estimate all 

independent material constants. For the case of the Mooney–Rivlin model, one 
additional test with 1  is enough. The procedure for the model is shown in 

fig. 2, where knowledge of   and   can provide 21 CC   and 

 211 / CCC   respectively and so 1C  and 2C  can be found independently. 

The method can be applied likewise for other hyperelastic models. 
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     A further important note is that the proposed method requires    such that 

  0x . This implies that   cannot take values that make   0x , 

because then the indentation becomes unstable under a compressive indentation 

load. For the case of the Mooney-Rivlin model, 013 269   , which 

implies 67.0 . This means that high compressive stretches ( )67.0  

can be problematic for indentation and useless for the proposed procedure of 
material constant estimation via indentation. Obviously, if the material properties 
are known, then the initial stretch   (if any) can be estimated from indentation 
as follows. Instrumented indentation can provide x  and then, isolating the 

value of  x , we can use the present analysis to obtain   (e.g. for a Mooney-

Rivlin material solve eqn. (13) with respect to  ). 
     The present methodology was applied to a carbon filled rubber that follows 
the Yeoh’s model (characterized by 3 constants, the second one being negative). 
By applying 4 different levels of prestretch, we were able to capture the three 
constants of the model quite reasonably (not shown here due to constrained 
space). 
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