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Abstract

With the broad industrial applications of curvy-layered structures due to their
desirable mechanical properties, contact analysis is no further confined to the
single layer half-space media, as originally developed. In the light of this view
and along the path towards the mechanical analysis of a thermalized composite
structural cable, this paper focuses on the derivation of a normal constitutive
“force-deformation” model based on the principles of contact mechanics for
layered media in pre-specified temperature scenarios, where both the thermal
difference and the heat fluxes are in the game. Applying the Fourier transform
method and the Inverse Fourier Convolution algorithm, the final numerical
analyses reveal the fact that not only the defined nonlinear spring gets stiffer with
a rise in the temperature, but also the deviation from the corresponding layered
contact phenomenon in the ambient environment is notably a function of the width
of contact.

Keywords: thermalization, contact analysis, nonlinear constitutive model.

1 Introduction

The principles of contact mechanics originate form the approximation of the curvy
mating surfaces by two parabolic functions [1]. Should R be the general arbitrary
contacting body radius and (z;, y; ), the horizontal and vertical components of the
position vector, Figure 1 shows the customized contact scenario for the current
problem of a steel wire (.S) in touch with a layered base of Polyethylene (P FE) and
cement paste (cem). In this figure, hpg and R., respectively refer to the thickness
of the PE layer and the equivalent contact radius, as further clarified.

For (z;/R <« 1) and cos(z;/R) ~ 1 — @, “Hertz” used the geometrical
condition, defined by eqn (1) to relate the relative deformation of any two curved
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contact scenario for the current problem of a steel wire (S) in touch with a
layered base of Polyethylene (PE) and cement paste (cem). In this Figure,
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frequency and back into the space domain and eventually, (iii) the numerical
solution to the derived system of equations for the distributed contact pressure
evaluation for three different temperature regimes detected in the cable. Results
and conclusions are briefly discussed in the final sections, as well.
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where conductivity of the materials is represented by A. In addition, r7 is the
radius of any arbitrary point within the circular core and 67, the corresponding
polar angle as shown in Figure 2(b). Moreover, r7,, and R are the total radius of
the cement core and the composite section, respectively and n is a natural number.
The upper and lower parts temperatures are presented by A and B around the cable
with the distinguished angles « and +y in the same Figure 2(b).

Although the equations above determine the temperature field within the cement
core, it is assumed that the internal PE layer and the surrounded steel wires
temperature in Figure 2(a) will remain constant and equal to an average value

of the immediately confining cement paste.

3 Steel-PE-cement interactions

The mathematical formulations towards appropriate thermalized “P — ¢ model
derivation for the steel-PE-cement layered structure per Figure 1, will be developed
and discussed, as follows.

3.1 Mathematical formulation of a semi-infinite layered static response

Generally, determination of the stress, strains and the corresponding displacements
within a continuum medium requires the satisfaction of the equilibrium
and compatibility equations, as well as the applied boundary conditions or
equivalently, the satisfaction of the single Airy stress function which takes the
following form in the presence of thermal fluctuations [11].

Vi¢+ V*(BEarAT) =0 @)

In eqn (4), ¢ is the Airy stress function and F and a respectively represent the
modulus of elasticity and the coefficient of linear thermal expansion. In addition,
AT refers to the thermal deviation from the reference temperature, 7.y = 23°C.

Accordingly and due to the layered contact scenario shown in Figure 1, the
solution to eqn (4) should meet the equality of the normal and shear tractions at
both the interface of the PE-cement layers and the contacting face with the steel
elements, as well as the match of the horizontal and vertical components of the
displacement at the joint PE-cement surface. An ultimate boundary condition has
to guarantee the boundness of the cement infinite layer vertical deformation as
y; — oo. Eventually, the solution to the biharmonic eqn (4) for the semi-infinite
PE-cement layered media confined at the contacting surface, is best described by
the application of Fourier transform and seeking the response in the frequency
domain w [3].

3.1.1 Solution in the frequency domain

Based on the explanations in the preceding subsection, the explicit application of
Fourier transform to the biharmonic Airy function takes the form of eqn (5) with
the “~” symbol indicating the transformed version of the function in the frequency
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domain. The solution to this 4th order nonhomogeneous equation given below
for each layer, consists of a general and a particular part (¢p), guaranteeing the
finiteness of the response [3, 12]

by, w) = eIV (C) + Cp) + e (C3 + Cy) + dp (31, w) (5)

with C;,7 = 1,4 being the constants of integration, which will further be derived
by the satisfaction of the previously defined boundary conditions.

In transforming the boundary conditions into the frequency domain, it is well
known that [11]

RN _ Poly, 21) Py, )
T o T o T ey

with 0, 0,, and 7, ,,, being the normal and shear components of stresses in the
indexed directions, accordingly.

Replacing the corresponding elasticity terms for the left-hand side of eqn
(6), applying the Fourier transform to this set of equations with F[f(™ (z)] =
(iw)" f(w) and simultaneous solution to the derived expressions after some
manipulations will render the following term for the vertical component of the
displacement in the frequency domain with v, being the Poisson’s ratio [11]

’(A):

(1-v%) Pp(y,z1) (1 +v)(v —2) Iy, 1) . (1+v) 0(arAT) 7
Euw? Oy3 E o) w? oy
all the other terms hold their definitions as expressed earlier.

Eventually, as eqn (7) is still undetermined in terms of ¢(y;,2) and
the corresponding coefficients, application of the earlier defined displacement
boundary conditions will determine Cj;,% = 1,4, = PE, cem for each layer.
However, the details could not explicitly be covered in this manuscript due to the
page limitations [3].

Furthermore, with the numerically negligible contributions (O~'0) of the
particular solution, g{)p, raised by the term VZ(EarAT) in eqn (4), only the
thermal effects on the coefficients in the general part of the response is taken
into account. Subsequently, a MATLAB code is set up to solve the derived
system of linear equations for the unknown coefficients C;,i = 1,4 in the PE-
cement arrangement, and further return the displacement of these two layers in the
frequency domain, using eqn (7).

3.1.2 Inverse Fourier transform

Once eqn (7), restated per eqn (8) is explicitly derived in terms of the C;,7 =
1,4,7 = PE, cem in the frequency domain, the second phase of calculations
has to concentrate on the derivation of the normal displacement of the contacting
bodies back in the space domain. To maintain the calculations efficiency in eqn
(9), the inverse Fourier convolution scheme is further applied, as symbolically
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represented by the expressions, below

O(w) = Hy(w)p(w) + Hyg(w)q(w) + HAT(w)AAT + HA»T(w)a(OgylAﬂ 8
+o0
v(z) = F'o(w)] = %/_ D duw,
+oo
= [ - Op©) + P - Qalo)} e,
+oo ar
[P Harla - AT + P g - 0 XD g
)]
1 [t
F7YH;(w)] = =) H;(w) cos (wz) dw (10)

with F~! being the inverse Fourier transform operator, ¢, the dummy convolution
variable in the space domain and H;(w),i = p, q, AT, AT, the Green’s functions
due to the pressure, shear, temperature and heat flux effects in the frequency
domain. All the other symbols maintain the same definition as earlier described.
In the next step, the transform in eqn (10) for the PE-cement layer will be
entailed. Nevertheless, due to the generally reported negligible coupled shear and
normal effects in contact studies, shear Green’s function will be removed from the
analysis, as it proceeds [1].

Overall, to numerically work out eqn (10) for the Green functions in the
frequency domain, a trapezoidal rule is applied. However, unlike the even Green
functions, H;(w),i = AT, AT in the PE and cement layers, H,(w) is integrated
numerically by trapezoids at suitably small intervals up to a sufficiently large value,
wp = 1600, and the rest by the application of cosine integrals, symbolized by
Cosint, as detailed per eqn (11) [2, 12-14].

_ 1 [+
F ! [HPPE (w)] = ; 0 HPPE (w) COS (WZZ) dwa
1 2w, —1
= Z{3¥0  H,,, (w) cos (wz) + 20ee = cosint(wo)}
@ Epg

(1)

Before proceeding to the contributions by the steel wire element, it is
reminded that similar numerical integration schemes towards the derivation of
the F~1[H;(w)],i = p, AT, AT functions at the common surface of the PE and
cement layer, being the reference point of indentation in the layered phase, must
be followed as well. However, the explicit mathematical details are avoided for the
sake of brevity, yet, the vertical displacement of the joint surface will appear as
Vgt 1n further notations.
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Pk m1 itar 16" the Qf 2 tror% %1 the PE' :Tayer the sur eformation’ of the
thermalized steel element has to be measured relative to a reference point, being
the center of the contacting wire. For the transparency of the future calculations,
F~H,,.(w)] will symbolize the deformation of the center of the steel wire at a
radius distance, Rg, due to the mechanical stresses by eqn (12).

Eventually, the derivation of the total vertical deformation in the space domain
through the inverse Fourier convolution is discussed in the following subsection.
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3.3 Total inverse Fourier convolution

The mathematical steps remained towards the derivation of the desired thermalized
constitutive model “P — ¢§” is the substitution of the general eqn (9), customized
separately for the contributing elements steel, PE and the cement paste, into the
geometrical contact condition represented by eqn (1). Hence, the substituted eqn
(13) is given below

@+y=vg(zl) —Usc(Rs)+UpE(Zl) —vatt(0)+y:5 (13)

where

+oo
vs(az) = / FYH, )2 — Op(Q) dC + RslarsATs(1 + vs),

— 00

—+oo
vsclfs) = [ P Hyl) (R - Op(O) &6 (14)
with the subscripts att and S labeling the corresponding parameters for the PE-
cement attachment interface and the steel wire, in the order of appearance. As
stated before, in eqn (14) the free thermal expansion of the steel element in a
plane strain state is directly superposed to the mechanical effects and vsc(Rg)
represents the deformation of the wire reference point. All the other variables hold
their definitions, as defined earlier in the text.

Finally, the only remained step is to derive the single unknown of the problem
per eqn (13), being the thermalized contact pressure distribution, p, at the mating
surface of steel and the layered medium. To simplify the final numerical integration
solution, first the displacement of an arbitrary point, being the ultimate width of
contact, z; = a, is subtracted from each side of the equation, as in eqn (15)

(a® = 27)
vs(z1) +vpe(z) —vs(a) —vpp(a) = 15)
2R.q
with ) ) )
Z] Z] Z]
Y=Ys+Ypre 9Ra + 2(—Rpr) _ 2Reg (16)

with all the terms defined earlier.
As follows, the outcome of the computational procedure will be discussed.

4 Results and discussion

At last, the solution to the derived set of (n — 1) independent linear equations
for n segments provided by eqn (15) is numerically followed for the three
thermal regions, identified in the cable section and tabulated by AT, and
wogiy?m per Table 1. In this table, the reproduced numerical values represent
the thermal characteristics of the point at the origin in the PE-cement attachment,
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Table 1: The cable distinguished thermalized regions.

0° AT°C ATE

60 36 +4.6841 x 102
0 15 —3.1389 x 102
300 6 —2.5645 x 102

per Figure 2(a) for different values of the angle 6. Furthermore and based on
the provided numerical data, attention has to be paid to the fact that the contact
characteristics are not only influenced by the value of the temperature deviation,
AT, but also vary as a function of the value as well as the sign of its derivative,
AT. Mathematically, such a phenomenon manifests itself by affecting the right
hand side of the contact eqn (13) while solving for the unknown pressure, p.

Next, for the sake of comparison, the normalized pressure profile for the
layered set up in eqn (15) and the normalized “Hertzian” pressure distribution
corresponding to the contact of a steel wire with a semi-infinite PE layer by eqn
(17), is depicted in Figure 4 for AT = 15°C [1]. All the diagrams have been
normalized to the maximum pressure in a Hertzian contact (pgrg) of the same
width, a, by eqn (17). As observed, unlike a single layer purely “Hertzian” contact,
the normalized pressure profile shows some dependencies on the width of contact.
According to the data per Figure 4, the deviation from a “Hertzian” pressure
distribution case gets more emphasized with an increase in the width of contact for
the current mechanical properties of the mating objects. Similar width dependent
behavior of the pressure profile in the purely mechanical contact of layered media
has been previously reported by pioneering investigators, as well [4, 14]. The
results presented in the current manuscript were also verified by the comparison
of a nonthermalized case data with those reported by Mejer and Gupta to reassure
the numerical accuracy of the set up programs which due to the available space
limitations, are omitted [4, 14].

2P
pu(z1) = @(02 - 212)

SIS

A7)

Once the pressure profiles for the different contacting widths are derived, a
back substitution into eqn (13) will consequently render the required approach of
the contacting bodies, d. The results of the aforementioned numerical procedure
for three different temperature regimes in addition to a nonthermalized layered
case have been depicted for Rg = hprp = 2.25 mm in Figure 5(a). As
noticed, the derived “P — §” curves reveal the point that not only the temperature
variation causes a shift to the nonthermalized “P — ¢ relation, but also it
changes the stiffness of the equivalent spring, in a nonlinear scheme. Furthermore,
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5 Conclusion

To briefly summarize the major out comes of this investigation in the preceding
section, the following (i) to (iv) items could be listed, as below.

(1) Width-dependent pressure distribution at the contacting surfaces, per
Figure 4. Pressure distribution deviates more significantly from a “Hertzian”
one, as the width of contact increases.

(ii)) A shift in the constitutive model in the layered thermalized cases in
comparison to the layered nonthermalized case (Figure 5(a)).

(iii) The nonlinear variation of the constitutive model itself for the different
numerically calculated thermal cases, per the same Figure 5(a).

(iv) More significant deviations from a nonthermalized layered “P — 4" relation
for lower values of approach of the two mating bodies, ¢, the subject of
Figure 5(b).
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