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Abstract

With the broad industrial applications of curvy-layered structures due to their
desirable mechanical properties, contact analysis is no further confined to the
single layer half-space media, as originally developed. In the light of this view
and along the path towards the mechanical analysis of a thermalized composite
structural cable, this paper focuses on the derivation of a normal constitutive
“force-deformation” model based on the principles of contact mechanics for
layered media in pre-specified temperature scenarios, where both the thermal
difference and the heat fluxes are in the game. Applying the Fourier transform
method and the Inverse Fourier Convolution algorithm, the final numerical
analyses reveal the fact that not only the defined nonlinear spring gets stiffer with
a rise in the temperature, but also the deviation from the corresponding layered
contact phenomenon in the ambient environment is notably a function of the width
of contact.
Keywords: thermalization, contact analysis, nonlinear constitutive model.

1 Introduction

The principles of contact mechanics originate form the approximation of the curvy
mating surfaces by two parabolic functions [1]. Should R be the general arbitrary
contacting body radius and (zl, yl), the horizontal and vertical components of the
position vector, Figure 1 shows the customized contact scenario for the current
problem of a steel wire (S) in touch with a layered base of Polyethylene (PE) and
cement paste (cem). In this figure, hPE and Req respectively refer to the thickness
of the PE layer and the equivalent contact radius, as further clarified.

For (zl/R � 1) and cos(zl/R) ' 1 − (zl/R)2

2 , “Hertz” used the geometrical
condition, defined by eqn (1) to relate the relative deformation of any two curved
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contact scenario for the current problem of a steel wire (S) in touch with a
layered base of Polyethylene (PE) and cement paste (cem). In this Figure,
hPE and Req respectively refer to the thickness of the PE layer and the
equivalent contact radius, as further clarified.

Figure 1: Idealization of the Wire-PE-Cement normal contact

For (zl/R << 1) and cos(zl/R) ' 1 − (zl/R)2

2 , ”Hertz” used the geo-
metrical condition, defined by eqn (1) to relate the relative deformation of
any two curved objects 1 and 2 within the contact area, as below

v̄1 + v̄2 + yl1 + yl2 = δ1 + δ2, v̄ + y = δ (1)

where yli = zl
2
i

2Ri
, i=1,2. Moreover, v̄i refers to the surface deformation

relative to a reference point and δi is the indentation approach of the distant
reference points for each contacting body [1].

The corresponding solution to eqn (1) for the ”Hertzian” single layer
Non-conforming half space contact of bodies is readily available in the
technical literature [1]. Moreover, further developments along with the
industrial demands for the contact analysis of the ”Non-Herzian” layered
systems, include but are not limited to the researches by Bentall and John-
son [2], Sneddon [3], Meijers [4] and Chen [5] for various purely mechanical
loading cases, by Barber [1], [6] in case of the thermalized punches in single
layered contacting bodies and by Liu [7] under the frictional heating im-
pacts as a function of the velocity of the slip in rough surfaces. Currently,
more complicated thermomechanical research cases with multilayered func-
tionally graded structures are also at hand, solely discussing the effects of
the frictionally induced thermal fields [8], [9]. Subsequently and to the best
of knowledge of the author of this manuscript, the thermalized constitutive
model relating the normal force, P, to the relative approach of two distant
points, δ, in the presence a of a non-friction based prescribed temperature
field, will for the first time be developed in the current investigation.

Looking for a proper contact pressure distribution to analyze the ther-
malized interactions of a composite cement-PE-steel structural cable de-
picted per Figure 2a, the nonlinear thermalized constitutive ”P −δ” model
is derived following the sequence, i) cable temperature distribution anal-
ysis, ii) the response evaluation of the layered PE-cement medium and

Figure 1: Idealization of the Wire-PE-Cement normal contact.

objects 1 and 2 within the contact area, as below

v̄1 + v̄2 + yl1 + yl2 = δ1 + δ2, v̄ + y = δ (1)

where yli = zl
2
i

2Ri
, i = 1, 2. Moreover, v̄i refers to the surface deformation relative

to a reference point and δi is the indentation approach of the distant reference
points for each contacting body [1].

The corresponding solution to eqn (1) for the “Hertzian” single layer Non-
conforming half space contact of bodies is readily available in the technical
literature [1]. Moreover, further developments along with the industrial demands
for the contact analysis of the “Non-Hertzian” layered systems, include but are
not limited to the researches by Bentall and Johnson [2], Sneddon [3], Mejer [4]
and Chen [5] for various purely mechanical loading cases, by Johnson [1], Barber
and Martin-Moran [6] in case of the thermalized punches in single layered
contacting bodies and by Liu and Wang [7] under the frictional heating impacts as
a function of the velocity of the slip in rough surfaces. Currently, more complicated
thermomechanical research cases with multilayered functionally graded structures
are also at hand, solely discussing the effects of the frictionally induced thermal
fields [8, 9]. Subsequently and to the best of knowledge of the author of this
manuscript, the thermalized constitutive model relating the normal force, P , to the
relative approach of two distant points, δ, in the presence a of a non-friction based
prescribed temperature field, will for the first time be developed in the current
investigation.

Looking for a proper contact pressure distribution to analyze the thermalized
interactions of a composite cement-PE-steel structural cable depicted per
Figure 2(a), the nonlinear thermalized constitutive “P − δ” model is derived
following the sequence, (i) cable temperature distribution analysis, (ii) the
response evaluation of the layered PE-cement medium and steel element in the
frequency and back into the space domain and eventually, (iii) the numerical
solution to the derived system of equations for the distributed contact pressure
evaluation for three different temperature regimes detected in the cable. Results
and conclusions are briefly discussed in the final sections, as well.
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steel element in the frequency and back into the space domain and even-
tually, iii) the numerical solution to the derived system of equations for
the distributed contact pressure evaluation for three different temperature
regimes detected in the cable. Results and conclusions are briefly discussed
in the final sections, as well.

2 The specified temperature field

(a) (b)

Figure 2: a) Insider of the composite cable, b) Temperature variation regime
around the composite cable section

The prescribed temperature scenario surrounding the composite struc-
tural cable for the current contact analysis is depicted in its general form in

Figure 2b. Assuming a steady state temperature regime around a circular
section and constant along the length, the thermal distribution is derived
through the solution of a Laplacian equation in the absence of any varia-
tions in the thermal conduction properties of the materials. Following the
principles in [10] and for the sake of brevity, the final temperature at any
point in the cement core, Tcem(rT , θT ), is expressed by eqn (2), below

Tcem(rT , θT ) = MD + Σn=∞
n=1

−λPE
λcem

[rTcem

−2nλPE − λcem
λPE + λcem

− rTcem

−2n]rT
n,

QPE [GPEn
cos(nθT ) +HPEn

sin(nθT )].

(2)

with the terms defined per eqn(3)

MD =
1

2π
[Aγ +B(2π − γ)],

(a)
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2 The specified temperature field
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The prescribed temperature scenario surrounding the composite struc-
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Figure 2b. Assuming a steady state temperature regime around a circular
section and constant along the length, the thermal distribution is derived
through the solution of a Laplacian equation in the absence of any varia-
tions in the thermal conduction properties of the materials. Following the
principles in [10] and for the sake of brevity, the final temperature at any
point in the cement core, Tcem(rT , θT ), is expressed by eqn (2), below

Tcem(rT , θT ) = MD + Σn=∞
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−λPE
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−2nλPE − λcem
λPE + λcem

− rTcem
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n,

QPE [GPEn
cos(nθT ) +HPEn
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(2)

with the terms defined per eqn(3)

MD =
1

2π
[Aγ +B(2π − γ)],

(b)

Figure 2: (a) Insider of the composite cable. (b) Temperature variation regime
around the composite cable section.

2 The specified temperature field

The prescribed temperature scenario surrounding the composite structural cable
for the current contact analysis is depicted in its general form in Figure 2(b).
Assuming a steady state temperature regime around a circular section and constant
along the length, the thermal distribution is derived through the solution of a
Laplacian equation in the absence of any variations in the thermal conduction
properties of the materials. Following the principles in [10] and for the sake of
brevity, the final temperature at any point in the cement core, Tcem(rT , θT ), is
expressed by eqn (2), below

Tcem(rT , θT ) = MD +

n=∞∑

n=1

−λPE
λcem

[rTcem

−2nλPE − λcem
λPE + λcem

− rTcem

−2n]rT
n,

QPE [GPEn
cos(nθT ) +HPEn

sin(nθT )] (2)

with the terms defined per eqn (3)

MD =
1

2π
[Aγ +B(2π − γ)],

QGn =
1

nπ
[rTcem

−2nλPE − λcem
λPE + λcem

Rn +R−n]
−1

{(B −A) sin(nα) + (A−B) sin[n(γ + α)]},

QHn = − 1

nπ
[rTcem

−2nλPE − λcem
λPE + λcem

Rn +R−n]
−1

{(B −A) cos(nα) + (A−B) cos[n(γ + α)]}
(3)
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where conductivity of the materials is represented by λ. In addition, rT is the
radius of any arbitrary point within the circular core and θT , the corresponding
polar angle as shown in Figure 2(b). Moreover, rTcem

and R are the total radius of
the cement core and the composite section, respectively and n is a natural number.
The upper and lower parts temperatures are presented byA andB around the cable
with the distinguished angles α and γ in the same Figure 2(b).

Although the equations above determine the temperature field within the cement
core, it is assumed that the internal PE layer and the surrounded steel wires
temperature in Figure 2(a) will remain constant and equal to an average value
of the immediately confining cement paste.

3 Steel-PE-cement interactions

The mathematical formulations towards appropriate thermalized “P − δ” model
derivation for the steel-PE-cement layered structure per Figure 1, will be developed
and discussed, as follows.

3.1 Mathematical formulation of a semi-infinite layered static response

Generally, determination of the stress, strains and the corresponding displacements
within a continuum medium requires the satisfaction of the equilibrium
and compatibility equations, as well as the applied boundary conditions or
equivalently, the satisfaction of the single Airy stress function which takes the
following form in the presence of thermal fluctuations [11].

∇4φ+∇2(EαT∆T ) = 0 (4)

In eqn (4), φ is the Airy stress function and E and αT respectively represent the
modulus of elasticity and the coefficient of linear thermal expansion. In addition,
∆T refers to the thermal deviation from the reference temperature, Tref = 23◦C.

Accordingly and due to the layered contact scenario shown in Figure 1, the
solution to eqn (4) should meet the equality of the normal and shear tractions at
both the interface of the PE-cement layers and the contacting face with the steel
elements, as well as the match of the horizontal and vertical components of the
displacement at the joint PE-cement surface. An ultimate boundary condition has
to guarantee the boundness of the cement infinite layer vertical deformation as
yl −→ ∞. Eventually, the solution to the biharmonic eqn (4) for the semi-infinite
PE-cement layered media confined at the contacting surface, is best described by
the application of Fourier transform and seeking the response in the frequency
domain ω [3].

3.1.1 Solution in the frequency domain
Based on the explanations in the preceding subsection, the explicit application of
Fourier transform to the biharmonic Airy function takes the form of eqn (5) with
the “̂” symbol indicating the transformed version of the function in the frequency
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domain. The solution to this 4th order nonhomogeneous equation given below
for each layer, consists of a general and a particular part (φ̂P ), guaranteeing the
finiteness of the response [3, 12]

φ̂(yl, ω) = e|ω|yl(C1 + C2) + e−|ω|yl(C3 + C4) + φ̂P (yl, ω) (5)

with Ci, i = 1, 4 being the constants of integration, which will further be derived
by the satisfaction of the previously defined boundary conditions.

In transforming the boundary conditions into the frequency domain, it is well
known that [11]

σzl =
∂2φ(yl, zl)

∂yl2
, σyl =

∂2φ(yl, zl)

∂zl2
, τylzl = −∂

2φ(yl, zl)

∂zl∂yl
(6)

with σzl , σyl and τylzl , being the normal and shear components of stresses in the
indexed directions, accordingly.

Replacing the corresponding elasticity terms for the left-hand side of eqn
(6), applying the Fourier transform to this set of equations with F [f (n)(x)] =

(iω)
n
f̂(ω) and simultaneous solution to the derived expressions after some

manipulations will render the following term for the vertical component of the
displacement in the frequency domain with ν, being the Poisson’s ratio [11]

v̂ =
(1− ν2)

Eω2

∂3φ̂(yl, zl)

∂yl3
+

(1 + ν)(ν − 2)

E

∂φ̂(yl, zl)

∂yl
+

(1 + ν)

ω2

ˆ∂(αT∆T )

∂yl
(7)

all the other terms hold their definitions as expressed earlier.
Eventually, as eqn (7) is still undetermined in terms of φ(yl, zl) and

the corresponding coefficients, application of the earlier defined displacement
boundary conditions will determine Cij , i = 1, 4, j = PE, cem for each layer.
However, the details could not explicitly be covered in this manuscript due to the
page limitations [3].

Furthermore, with the numerically negligible contributions (O−10) of the
particular solution, φ̂p, raised by the term ∇2(EαT∆T ) in eqn (4), only the
thermal effects on the coefficients in the general part of the response is taken
into account. Subsequently, a MATLAB code is set up to solve the derived
system of linear equations for the unknown coefficients Ci, i = 1, 4 in the PE-
cement arrangement, and further return the displacement of these two layers in the
frequency domain, using eqn (7).

3.1.2 Inverse Fourier transform
Once eqn (7), restated per eqn (8) is explicitly derived in terms of the Cij , i =
1, 4, j = PE, cem in the frequency domain, the second phase of calculations
has to concentrate on the derivation of the normal displacement of the contacting
bodies back in the space domain. To maintain the calculations efficiency in eqn
(9), the inverse Fourier convolution scheme is further applied, as symbolically
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represented by the expressions, below

v̂(ω) = Hp(ω)p̂(ω) +Hq(ω)q̂(ω) +H∆T (ω)∆̂T +H∆́T (ω)
ˆ∂(αT∆T )

∂yl
(8)

v(zl) = F−1[v̂(ω)] =
1

2π

∫ +∞

−∞
v̂eiωzl dω,

=

∫ +∞

−∞
{F−1[Hp](zl − ζ)p(ζ) + F−1[Hq](zl − ζ)q(ζ)} dζ,

+

∫ +∞

−∞
{F−1[H∆T ](zl − ζ)∆T (ζ) + F−1[H∆́T ](zl − ζ)

∂(αT∆T )

∂yl
} dζ

(9)

F−1[Hi(ω)] =
1

π

∫ +∞

0

Hi(ω) cos (ωzl) dω (10)

with F−1 being the inverse Fourier transform operator, ζ, the dummy convolution
variable in the space domain and Hi(ω), i = p, q,∆T, ∆́T , the Green’s functions
due to the pressure, shear, temperature and heat flux effects in the frequency
domain. All the other symbols maintain the same definition as earlier described.
In the next step, the transform in eqn (10) for the PE-cement layer will be
entailed. Nevertheless, due to the generally reported negligible coupled shear and
normal effects in contact studies, shear Green’s function will be removed from the
analysis, as it proceeds [1].

Overall, to numerically work out eqn (10) for the Green functions in the
frequency domain, a trapezoidal rule is applied. However, unlike the even Green
functions, Hi(ω), i = ∆T, ∆́T in the PE and cement layers, Hp(ω) is integrated
numerically by trapezoids at suitably small intervals up to a sufficiently large value,
ω0 = 1600, and the rest by the application of cosine integrals, symbolized by
Cosint, as detailed per eqn (11) [2, 12–14].

F−1[HpPE
(ω)] =

1

π

∫ +∞

0

HpPE
(ω) cos (ωzl) dω,

=
1

π
{Σω0

ω=0HpPE
(ω) cos (ωzl) +

2(ν2
PE − 1)

EPE
Cosint(ω0zl)}

(11)

Before proceeding to the contributions by the steel wire element, it is
reminded that similar numerical integration schemes towards the derivation of
the F−1[Hi(ω)], i = p,∆T, ∆́T functions at the common surface of the PE and
cement layer, being the reference point of indentation in the layered phase, must
be followed as well. However, the explicit mathematical details are avoided for the
sake of brevity, yet, the vertical displacement of the joint surface will appear as
vatt in further notations.
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future calculations, F−1[HpSC
(ω)] will symbolize the deformation of the

center of the steel wire at a radius distance, RS , due to the mechanical
stresses by eqn (12).

Eventually, the derivation of the total vertical deformation in the space
domain through the inverse Fourier convolution is discussed in the following
subsection.

Figure 3: The schematic thermomechanical indentation δ of the steel wire

3.3 Total inverse Fourier convolution

The mathematical steps remained towards the derivation of the desired
thermalized constitutive model ”P − δ” is the substitution of the general
eqn (9), customized separately for the contributing elements steel, PE and
the cement paste, into the geometrical contact condition represented by
eqn (1). Hence, the substituted eqn (13) is given below

v̄ + y = vS(zl)− vSC(RS) + vPE(zl)− vatt(0) + y = δ (13)

where

vS(zl) =

∫ +∞

−∞
F−1[HpS ](zl − ζ)p(ζ) dζ +RS [αT S∆TS(1 + νS)],

vSC(RS) =

∫ +∞

−∞
F−1[HpSC

](RS − ζ)p(ζ) dζ. (14)

with the subscripts att and S labeling the corresponding parameters for
the PE-cement attachment interface and the steel wire, in the order of
appearance. As stated before, in eqn (14) the free thermal expansion of the
steel element in a plane strain state is directly superposed to the mechanical
effects and vSC(RS) rspresents the deformation of the wire reference point.
All the other variables hold their definitions, as defined earlier in the text.

Finally, the only remained step is to derive the single unknown of the
problem per eqn (13), being the thermalized contact pressure distribution,

Figure 3: The schematic thermomechanical indentation δ of the steel wire.

3.2 Contact of a thermalized elastic steel cylinder

As long as the steel element is only a single layer medium, significant
simplifications through the application of the already available closed form
solutions in the frequency domain could be achieved. By the cancelation of all
the contributions by the heat flux term, ∂(αT ∆T )

∂yl
, for constant temperatures of

steel, the only required modification to the mechanically induced deformation
could be captured by the effects of a constant ∆T , superposed on the impacts of
the contact stress p. The theoretical formulations below serve as the mathematical
representation of the mechanical contributions by a unit p̂ in the frequency domain.

F−1[HpS (ω)] =
2(ν2

S − 1)

ESπ

∫ +∞

0

cos(ωzl)

|ω| dω = −2(ν2
S − 1)

ESπ
ln(zl) (12)

where all the terms are defined earlier elsewhere with the index S for the steel.
To handle the temperature effects pictured in Figure 3, it must be noticed that a

positive temperature change will induce a surface displacement in the negative
direction and the superposition of the thermal and mechanical stresses will be
of a destructive type, unless ∆T < 0. Furthermore, since the actual undeformed
shape of the wire and the constant temperature rise within the object is known, the
thermal deformations could separately and readily be added to the mechanical one
right in the space domain, following linear thermoelasticity. The final indentation
of the steel wire surface shown by δ per Figure 3 is the one capturing the effect of
the added thermal part (continuous line) to the mechanically induced one (dotted
line).

Similar to the deformation of the PE layer, the surface deformation of the
thermalized steel element has to be measured relative to a reference point, being
the center of the contacting wire. For the transparency of the future calculations,
F−1[HpSC

(ω)] will symbolize the deformation of the center of the steel wire at a
radius distance, RS , due to the mechanical stresses by eqn (12).

Eventually, the derivation of the total vertical deformation in the space domain
through the inverse Fourier convolution is discussed in the following subsection.
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3.3 Total inverse Fourier convolution

The mathematical steps remained towards the derivation of the desired thermalized
constitutive model “P − δ” is the substitution of the general eqn (9), customized
separately for the contributing elements steel, PE and the cement paste, into the
geometrical contact condition represented by eqn (1). Hence, the substituted eqn
(13) is given below

v̄ + y = vS(zl)− vSC(RS) + vPE(zl)− vatt(0) + y = δ (13)

where

vS(zl) =

∫ +∞

−∞
F−1[HpS ](zl − ζ)p(ζ) dζ +RS [αT S∆TS(1 + νS)],

vSC(RS) =

∫ +∞

−∞
F−1[HpSC

](RS − ζ)p(ζ) dζ (14)

with the subscripts att and S labeling the corresponding parameters for the PE-
cement attachment interface and the steel wire, in the order of appearance. As
stated before, in eqn (14) the free thermal expansion of the steel element in a
plane strain state is directly superposed to the mechanical effects and vSC(RS)
represents the deformation of the wire reference point. All the other variables hold
their definitions, as defined earlier in the text.

Finally, the only remained step is to derive the single unknown of the problem
per eqn (13), being the thermalized contact pressure distribution, p, at the mating
surface of steel and the layered medium. To simplify the final numerical integration
solution, first the displacement of an arbitrary point, being the ultimate width of
contact, zl = a, is subtracted from each side of the equation, as in eqn (15)

vS(zl) + vPE(zl)− vS(a)− vPE(a) =
(a2 − z2

l )

2Req
(15)

with

y = ylS + ylPE =
z2
l

2RS
+

z2
l

2(−RPE)
=

z2
l

2Req
(16)

with all the terms defined earlier.
As follows, the outcome of the computational procedure will be discussed.

4 Results and discussion

At last, the solution to the derived set of (n − 1) independent linear equations
for n segments provided by eqn (15) is numerically followed for the three
thermal regions, identified in the cable section and tabulated by ∆Tcem and
∂(αT ∆T )

∂yl
per Table 1. In this table, the reproduced numerical values represent

the thermal characteristics of the point at the origin in the PE-cement attachment,
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Table 1: The cable distinguished thermalized regions.

θ◦ ∆T ◦C ∆́T
◦C
m

60 36 +4.6841× 102

0 15 −3.1389× 102

300 6 −2.5645× 102

per Figure 2(a) for different values of the angle θ. Furthermore and based on
the provided numerical data, attention has to be paid to the fact that the contact
characteristics are not only influenced by the value of the temperature deviation,
∆T , but also vary as a function of the value as well as the sign of its derivative,
∆́T . Mathematically, such a phenomenon manifests itself by affecting the right
hand side of the contact eqn (13) while solving for the unknown pressure, p.

Next, for the sake of comparison, the normalized pressure profile for the
layered set up in eqn (15) and the normalized “Hertzian” pressure distribution
corresponding to the contact of a steel wire with a semi-infinite PE layer by eqn
(17), is depicted in Figure 4 for ∆T = 15◦C [1]. All the diagrams have been
normalized to the maximum pressure in a Hertzian contact (pH0) of the same
width, a, by eqn (17). As observed, unlike a single layer purely “Hertzian” contact,
the normalized pressure profile shows some dependencies on the width of contact.
According to the data per Figure 4, the deviation from a “Hertzian” pressure
distribution case gets more emphasized with an increase in the width of contact for
the current mechanical properties of the mating objects. Similar width dependent
behavior of the pressure profile in the purely mechanical contact of layered media
has been previously reported by pioneering investigators, as well [4, 14]. The
results presented in the current manuscript were also verified by the comparison
of a nonthermalized case data with those reported by Mejer and Gupta to reassure
the numerical accuracy of the set up programs which due to the available space
limitations, are omitted [4, 14].

pH(zl) =
2P

πa2
(a2 − z2

l )
1
2 (17)

Once the pressure profiles for the different contacting widths are derived, a
back substitution into eqn (13) will consequently render the required approach of
the contacting bodies, δ. The results of the aforementioned numerical procedure
for three different temperature regimes in addition to a nonthermalized layered
case have been depicted for RS = hPE = 2.25 mm in Figure 5(a). As
noticed, the derived “P − δ” curves reveal the point that not only the temperature
variation causes a shift to the nonthermalized “P − δ” relation, but also it
changes the stiffness of the equivalent spring, in a nonlinear scheme. Furthermore,
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some dependencies on the width of contact. According to the data per Fig-
ure 4, the deviation from a ”Hertzian” pressure distribution case gets more
emphasized with an increase in the width of contact for the current mechan-
ical properties of the mating objects. Similar width dependent behavior of
the pressure profile in the purely mechanical contact of layered media has
been previously reported by pioneering investigators, as well [4], [14]. The
results presented in the current manuscript were also verified by the com-
parison of a nonthermalized case data with those reported by Mejer and
Gupta to reassure the numerical accuracy of the set up programs which
due to the available space limitations, are omitted [4], [14].

pH(zl) =
2P

πa2
(a2 − z2

l )
1
2 (17)

−1 −0.5 0 0.5 1
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Once the pressure profiles for the different contacting widths are de-
rived, a back substitution into eqn (13) will consequently render the re-
quired approach of the contacting bodies, δ. The results of the afore-
mentioned numerical procedure for three different temperature regimes in
addition to a nonthermalized layered case have been depicted for RS =
hPE = 2.25mm in Figure 5a. As noticed, the derived ”P − δ” curves re-
veal the point that not only the temperature variation causes a shift to
the nonthermalized ”P − δ” relation, but also it changes the stiffness of
the equivalent spring, in a nonlinear scheme. Furthermore, the magnifying

Figure 4: Normalized “Hertzian” and the derived “Non-Hertzian” contact pressure
profile for ∆T = 15◦C.
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effects of the existing temperature field on the force ratio of the thermal-
ized layered cases to the nonthermalized one, P
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, versus the normalized

mutual approach to the equivalent contact radius, δ
Req

, are graphically re-

produced per Figure 5b, using the fitted closed form parabolic equations.
The visualized outcomes confirm the undeniable effects of thermalization
on the nonlinear performance of the defined equivalent spring, specifically
with a decrease in the contact width and/or the contact approach.

5 Conclusion

To briefly summarize the major out comes of this investigation in the pre-
ceding section, the following (i) to (iv) items could be listed, as below,
i) Width-dependent pressure distribution at the contacting surfaces, per
Figure 4. Pressure distribution deviates more significantly from a ”Herzian”
one, as the width of contact increases, ii) A shift in the constitutive model
in the layered thermalized cases in comparison to the layered nonthermal-
ized case (Figure 5a), iii) The nonlinear variation of the constitutive model
itself for the different numerically calculated thermal cases, per the same
Figure 5a, iv) More significant deviations from a nonthermalized layered
”P − δ” relation for lower values of approach of the two mating bodies, δ,
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Figure 5: (a) Nonlinear thermalized “P − δ” relationship and the fitted parabolic
functions. (b) Normalized force ratio vs. the normalized contact
approach.

the magnifying effects of the existing temperature field on the force ratio of
the thermalized layered cases to the nonthermalized one, P

P∆T=0
, versus the

normalized mutual approach to the equivalent contact radius, δ
Req

, are graphically
reproduced per Figure 5(b), using the fitted closed form parabolic equations.
The visualized outcomes confirm the undeniable effects of thermalization on
the nonlinear performance of the defined equivalent spring, specifically with a
decrease in the contact width and/or the contact approach.
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5 Conclusion

To briefly summarize the major out comes of this investigation in the preceding
section, the following (i) to (iv) items could be listed, as below.

(i) Width-dependent pressure distribution at the contacting surfaces, per
Figure 4. Pressure distribution deviates more significantly from a “Hertzian”
one, as the width of contact increases.

(ii) A shift in the constitutive model in the layered thermalized cases in
comparison to the layered nonthermalized case (Figure 5(a)).

(iii) The nonlinear variation of the constitutive model itself for the different
numerically calculated thermal cases, per the same Figure 5(a).

(iv) More significant deviations from a nonthermalized layered “P − δ” relation
for lower values of approach of the two mating bodies, δ, the subject of
Figure 5(b).
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