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Abstract 

Accurate evaluation of transverse stresses in laminated composites and sandwich 
plates using 2D FE models involves cumbersome post processing techniques. In 
this paper a simple and efficient method has been proposed for accurate 
evaluation of through-the-thickness distribution of transverse stresses in 
composites and sandwich laminates by using a displacement based C0 FE model 
derived from refined higher order shear deformation theory (RHSDT) and a 
Least Square Error (LSE) method. The C0 FE model satisfies the inter-laminar 
shear stress continuity conditions at the layer interfaces and zero transverse shear 
stress conditions at the top and bottom of the plate. In this model the first 
derivatives of transverse displacement have been treated as independent 
variables to circumvent the problem of C1 continuity associated with the above 
plate theory (RHSDT). The LSE method is applied to the 3D equilibrium 
equations of the plate problem at the post-processing stage, after in-plane 
stresses are calculated by using the above FE model based on RHSDT. Thus the 
proposed method is quite simple and elegant compared to the usual method of 
integrating the 3D equilibrium equations at the post-processing stage for the 
calculation of transverse stresses in a composite laminate. Accuracy of the 
proposed method is demonstrated in the numerical examples through comparison 
of the present results with those obtained from different models based on higher 
order shear deformation theory (HSDT) and 3D elasticity solutions. 
Keywords: composite sandwich laminates, C0RHSDT, transverse shear stresses, 
LSE method. 
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1 Introduction 

Composites and sandwich structural components are widely used in mechanical, 
aerospace, civil, ocean and other engineering fields due to their advantage of 
high stiffness and strength to weight ratio. However, these structures are weak in 
shear due to their low shear modulus compared to extensional rigidity. Thus the 
effect of shear deformation is quite significant which may lead to failure. 
However, the accurate evaluation of transverse shear stresses is very difficult 
using 2D models available in the literature. To predict accurate transverse shear 
stresses within the framework of 2D analysis extensive research is going on over 
the years for developing appropriate and accurate models. 
     The widely used 2D displacement-based plate theories can be categorized into 
two groups and they are (1) equivalent single-layer plate theory (ESLT) and 
(2) layer-wise plate theory (LWT). In equivalent single-layer theory [1–7] the 
deformation of the plate is expressed in terms of unknown parameters of a single 
plane, which is usually taken as the middle plane of the plate. These are similar 
to Reissner–Mindlin’s plate theory (i.e., the first-order shear deformation theory, 
FSDT) which requires shear correction factor but there are some improvements, 
which allow the warping of plate sections to have a higher-order variation of 
transverse shear stresses/strains along the thickness. In the layer wise theory  
[8–11] the deformation of the plate is expressed in terms of unknowns of a 
number of planes, which are taken at the layer interfaces and also at some 
intermediate levels in some cases. The mathematical involvement in these plate 
theories is quite heavy and the solution becomes quite expensive in a 
multilayered plate, as the unknowns are dependent on number of layers. There is 
another class of layer wise plate theories [12–18] where the unknowns of 
different planes are expressed in terms of those of a particular plane using the 
condition of shear stress continuity at the layer interfaces and the number of 
unknowns is dramatically reduced.  
     In this context, the first-order shear deformation theory (Yang et al. [1]) 
maybe considered as the simplest option where an arbitrary shear correction 
factor is used since the transverse shear strain is assumed to have uniform 
variation over the entire plate thickness. The first order shear deformation theory, 
which assumes a constant transverse shear strain across the thickness direction 
and a shear correction factor, is introduced to correct the discrepancy between 
the actual transverse shear stress distribution and those assumed in this theory. 
The performance of first-order shear deformation theory is dependent on shear 
correction factors (Vlachoutsis [2]). For a better representation of the transverse 
shear deformations, higher order plate theories (HSDT) are proposed by Lo et  
al. [3], Reddy [4], Manjunatha and Kant [5], and a few others, in which the use 
of shear correction factor could be eliminated. It gives continuous variation of 
transverse shear strain across the entire thickness, which leads to discontinuity in 
the variation of the transverse shear stresses at the layer interfaces. But the actual 
behavior of laminated plate is the opposite i.e., the transverse shear stress is 
continuous at the interfaces whereas the strains may be discontinuous.  
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     In order to overcome the above problem, Srinivas [8], Toledano and 
Murakami [9], Robbins and Reddy [10], Li and Liu [11], and some other 
investigators proposed layer-wise plate theories taking unknowns at each layer 
interface. These plate theories perform well but they require significant 
computational involvement in analyzing a multi-layered plate since the number 
of unknowns increases with the number of layers. A major development in this 
direction is due to Di Sciuva [12], Murakami [13], Liu and Li [14], and few 
others. They proposed zigzag plate theory where layer-wise theory is initially 
used to represent the in-plane displacements having piecewise linear variation 
across the thickness. The unknowns at the different interfaces are subsequently 
expressed in terms of those at the reference plane through satisfaction of 
transverse shear stress continuity at the layer interfaces. A further improvement 
in this direction is due to Bhaskar and Varadan [15], Di Sciuva [16], Cho and 
Parmerter [17, 18] and some other investigators who considered the variation of 
in-plane displacements to be a superposition of a piecewise linearly varying field 
on an overall higher order variation. Carrera [19] and Demasi [20] considered 
higher order terms in the displacement field, using Murakami’s [21] zig-zag 
function and assumptions for transverse stresses brings about a large number of 
solution variables. However, applying static condensation technique allows us to 
eliminate the unknowns related to the transverse stresses and thus, to derive 
efficient plate theories (Demasi [22, 23]). Kapuria et al. [24], and Kapuria and 
Achary [25] have presented zigzag theory for hybrid beams and plates in which 
number of variable are reduced to FSDT by satisfying interface and boundary 
conditions, it yield approximately accurate results for cross ply only. Zhen and 
Wanji [26] proposed C0 type higher-order theory for bending analysis of 
laminated composite and sandwich plates. Zhen et al. [27] also proposed C0 type 
finite element based higher-order theory for accurately predicting natural 
frequencies of sandwich plate with soft core. These theories are usually referred 
as refined higher order shear deformation theory (RHSDT). However, there are 
very few C0 elements reported in the literature which can model the RHSDT. 
     Conventionally, the transverse stress recovery from the 3D equilibrium 
equations is dependent on the cumbersome integration of these equations 
through the thickness of laminate. Recently, Bhar and Satsangi [28] have 
proposed an accurate transverse stress evaluation in composite/sandwich thick 
laminates using C0 HSDT and a novel post-processing technique. In this paper a 
simple least square of error (LSE) method is proposed to accurately calculate the 
transverse shear stresses. This method depends on an assumed variation of 
transverse stress field, suitably chosen and applied after the global analysis. This 
technique gives quite good results for transverse shear stresses compared to those 
obtained by using constitutive relations. However, the displacement formulation 
chosen in this paper is based on HSDT which gives continuous transverse shear 
strain variation across the thickness with possible discontinuity in the 
corresponding stresses. However, the shear stress field and the shear stress 
continuity conditions at the layer interfaces used in their formulation are not 
consistent with the corresponding strain/stress fields used in HSDT. As such 
there is further scope to improve the results for displacement and also getting 
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accurate values of transverse shear stresses, if the formulation is based on 
RHSDT. In this connection it is to be noted that the displacement field chosen in 
the formulation of RHSDT is perfectly consistent with the stress field chosen 
along with the condition of stress continuity at the layer interfaces required in the 
formulation of LSE to calculate the transverse shear stresses accurately.  
     Considering all these aspects in view, an attempt has been made in this study 
to develop an improved FE plate model based on RHSDT to accurately predict 
the deflections and stresses of composites and sandwich laminates due to 
different loadings, boundary and geometric conditions. The nine noded C0 
element proposed by Shankara and Iyengar [7] for simple higher order theory 
(HSDT) is upgraded to model the RHSDT in the present study. In the present 
paper the global response (i.e. displacement) is calculated first, using this 
efficient C0 FE model based on RHSDT and then an accurate prediction of 
transverse stresses is calculated from the 3D equilibrium equations using an 
efficient LSE method. It is interesting to note that in the proposed model, the 
displacement field used for calculation of unknown displacements and in-plane 
stresses are consistent with the stress field chosen along with the condition of 
stress continuity at the layer interfaces for calculation of transverse shear stresses 
based on the LSE method. The accuracy of the proposed finite element model is 
established by comparing the results with three dimensional elasticity and other 
finite element solutions.  

2 Formulation 

2.1 FE model for displacements and in-plane stresses evaluation 

The in-plane displacement fields (fig. 1) are typical to those of RHSDT and are 
as below: 

 

1 1
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k k
k k k k

k k
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(1) 

and  
                                                               3 0 ( , ).u w x y  (2) 

 

Figure 1: The displacement configuration for general lamination lay-up. 

304  Surface Effects and Contact Mechanics XI

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 78, © 2013 WIT Press



     The stress–strain relationship of a lamina (say, k-th) lamina having any fiber 
orientation with respect to structural axes system (x-y-z) may be expressed as 

    .kQ      (3) 

By using minimizing the potential energy approach with respect to  , one can 

obtain 

 
    K P   (4) 

where  K  is the element stiffness matrix and  P the nodal load vector.  

     The details about FE Model are given in Singh et al. [33]. 

2.2 The least square of error (LSE) method for transverse stress evaluation 

The 3D equilibrium equations in the absence of external and body forces may be 
written as below, 

 , , , 0xx x xy y xz z      

 , , , 0xy x yy y yz z      

 , , , 0xz x yz y zz z      (5) 

with usual conventions for the derivatives.   
     It is noted that the through-the-thickness variation of transverse shear stresses 
at an arbitrary point P (x, y) in the plan of the plate in thick laminates actually 
show nonlinear variation. As such the transverse shear stress component xz can 
be assumed to be distributed in a polynomial form of suitable order through the 
thickness of the p-th lamina at the point P (x, y). In the proposed study, this 
variation is assumed to be quadratic and is defined as below, 

 
( ) 2 2

0 1 2τ [1 ]{ }p
xz p p p pz z z z        (6) 

with 0, 1, 2( )pi i   being unknown coefficients. It should be noted that this 

form is also consistent with the quadratic through-the-thickness variation of 
transverse shear stresses along with the condition of stress continuity at the layer 
interfaces derived from the displacement assumptions in eqn (1) based on the 

proposed RHSDT model. Denoting ( )p b
xz , ( )p b

xzQ  and ( )p t
xz  the shear stress value 

at the bottom, the resultant transverse shear force and the shear stress value at the 
top of the p-th layer respectively, one can obtain the following by using eqn (6) 
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where Zpb and Zpt are the z-coordinates of the bottom and top surfaces of the p-th 
layer and  

 
( ) ( )

; 1, 2, 3
i i

pt pb
pi

z z
Z i

i


   (8) 

  =[ ]{ }.p pz   (9) 

     Substituting 1 (p) (p)
xz xz{ } [ ]   { } [ ]{ }p pz A     from eqn (9) into eqn 

(6) one can get, 

 ( ) 2 ( ) ( )[1 ] [ ]{ } [ ]{ }p p p
xz xz xzz z A      (10) 

where 1 2 3[ ] [ ]     denote a kind of shape functions of the thickness 

coordinate such that 

 2
1 2 3i i i iA A z A z      

 , 2 32i z i iA A z    (11) 

ijA  being the element on the ith row and jth column of the [A] matrix.  

     From eqn (19),  

 ( ) ( ) ( ) ( )
1 2 3

p pb p pt
xz xz xz xzQ         (12) 

 ( ) ( ) ( ) ( )
, 1, 2, 3, .p pb p pt

xz z z xz z xz z xzQ         (13) 

     Now, since the distribution of 
( )p
xz  through the thickness of p-th layer is 

given by eqn (12), the total square of error in satisfying the first of the 
equilibrium equations (14), over the thickness of p-th layer, may be written as, 

 
2( ) ( ) ( )

, , ,( ) ( )
pt

pb

z

p p p
p xz z xx x xy y

z

E dz        (14) 

where the in-plane stresses in the right most parenthesis are calculated from 
relevant constitutive relations for p-th layer and interpolation of smoothed mid 
plane nodal strains of the element, after performing the global finite element 
analysis. pE , in eqn (14) should be minimum with respect to the unknown ply 

quantities
( )p b
xz ,

( )p b
xzQ  and

( )p t
xz , as par the principle of the least square of 

errors. Hence,  
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0.p p p

pb p pt
xz xz xz

E E E

Q 
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  
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 (15) 
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     Using eqn (13) and (14), in the first, second and third of the relations of (15) 
and then re-arranging and written in a combined form as below, 

 

( )
1, 1, 1, 2, 1, 3, 1,

( ) ( ) ( )
2, 1, 2, 2, 2, 3, 2, , ,
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3, 1, 3, 2, 3, 3, 3,
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p t p t
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xzz z z z z z zz z

p p p
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z zpt
z z z z z z zxz

dz Q dz

      
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       

         
       

       

    

and in a compact form, as 

    ( ) ( ) .
pp p

xz xz xzk f     (16) 

     But, it can also be written as 

   ( ) ( )
, ,( ) , .

p t

p b

z
e

p p
pixx x i z xx xy xs

p
z

dz Q Q Q H N x          (17) 

In eqn (15),  e

p
  is the computed smoothed mid plane nodal strain vector of the 

e-th element in which the point P (x, y) is located, [N,x] is the x-derivative of the 
interpolation matrix used for calculating the strain components at P (x, y) from 
corresponding nodal components, Qxx,…etc are the relevant elements of the in 
plane constitutive matrix of the p-th ply under consideration and piH 

 
is given 

by 

 
2 3( 2 )

p t

p b

z

pi i i p

z

H A A z H dz            (18) 

where [Hp] has given in eqn (8) of Singh et al. [33].  
In a similar manner as in eqn (17), one can compute, 

   ( ) ( )
, ,( ) , .

p t

p b

z
e

p p
pixy y i z xs ys ss

p
z

dz Q Q Q H N y          (19) 

     Using eqn (18) and (19), the individual terms in eqn (16) may be computed.  

     Now, since due to inter-laminar shear stress continuity, ( 1)pt p b
xz xz    , the 

relation in eqn (16) may be assembled for all the layers p =1,2,…N, in a similar 
procedure as for the assembly of individual elements in the finite element 
analysis, to obtain it for the whole laminate 

    xz xz xzk f     (20) 

where the solution vector  xz  is in the form 

    1 1 2 2 3 1......... .
Tb b b N Nb N Nt

xz xz xz xz xz xz xz xz xz xzQ Q Q Q       (21) 
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     The top and bottom surface boundary conditions to be applied are given by 

 
1 ( , )

( , )

b
xz b

Nt
xz t

T x y

T x y








 (22) 

where ( , )bT x y  and ( , )tT x y  represent the applied shear traction at the bottom 

and top points of the laminate corresponding to the point P (x, y) under 
consideration. After applying the necessary boundary conditions, eqn (20) 
representing a set of linear algebraic equations can be solved to obtain directly 
the interlaminar stresses and the resultants in x-z plane in individual plies. 
Following similar procedure for the transverse shear stress on the y-z plane and 
using the second of the equilibrium equations in eqn (5),  

    .yz yz yzk f     (23) 

     After obtaining the xz by solving (23), the components of this vector are 
substituted back into eqn (10) to obtain the distribution of ( )p

xz  in each layer  

p= 1,…., N. The same procedure is adopted to find the distribution of yz through 
the laminate thickness. 
     Once the distributions of xz and yz have been obtained through the laminate 
thickness, the third of eqn (5) may be used to obtain the distribution of zz 
through the laminate thickness following similar procedures. 

3 Numerical results and discussions 

In order to demonstrate the accuracy and applicability of the proposed FE model 
based on RHSDT and LSE method a number of numerical examples on 
composites and sandwich laminates are solved. The general geometric details of 
the plate problem considered for different problems are shown in fig. 3.  

 

Figure 2: Rectangular plate having a mesh of mxn. 

3.1 Transverse shear stress distribution through the thickness 

The proposed combined model is used for calculating the transverse shear 
stresses across the thickness of composites and sandwich laminates having 
different parametric variations and subjected to transverse static load. The 
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transverse shear stresses are calculated for different problems by using the direct 
constitutive relationship as well as by the equilibrium equations used in the LSE 
method. A multiplication factor, m=h/q0a is used to convert the transverse shear 
stresses in non-dimensional forms, where a, is the least lateral dimension of the 
plate and q0 is the amplitude of the applied sinusoidal load at the plate centre. 
The abbreviations ‘Equil’ and ‘Const’ preceded by an underscore in the legends 
of the figures indicate quantities evaluated using 3D equilibrium equations and 
constitutive relations, respectively. 

3.1.1 Transverse shear stress distribution in symmetric cross-ply laminate 
In this example, the problems of a three-layer [0/90/0] cross ply simply 
supported square laminate of equal individual thickness have been solved taking 
thickness ratio, h/a = 0.25. 
     Although the individual layers possess different orientations but they have 
equal thickness and material property (E1=25E2, E2=E3, G12 = G13 = 0.5E2, G23 = 
0.2E2, ν12 = 0.25 and ν13 = 0.01). This is also applicable to all the subsequent 
problems unless mentioned otherwise. 
     Through-the thickness variation of non-dimensional transverse shear stress, 
yz, obtained at the centre of the bottom edge (x= a/2 and y=0) of the plate are 
plotted in fig. 4 plotted for the case of three layered [0/90/0] cross ply laminates. 

 

 RHSDT_Const
 RHSDT_Equil
 Pagano [34]
 HSDT_Const
 HSDT_Equil

0.0 0.1 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

h/a=0.25

T
hi

ck
ne

ss
 C

oo
rd

in
at

e 
(z

/h
)

Transverse Shear Stress 
yz

 

 

Figure 3: Variation of non-dimensional transverse shear stress yz through the 

thickness of three layer [0/90/0] laminate (thickness ratio,  
h/a = 0.25). 

3.1.2 Transverse shear stress distribution in anti-symmetric cross-ply 
laminate 

In this example, the problem of a simply supported four-layer [0/90/0/90] square 
cross-ply laminate having equal layer thickness has been solved by taking 
thickness ratio, h/a = 0.25. The plate is subjected to the uniform distributed 
loading (UDL). A multiplication factor, m=h/q0a is used to convert the 
transverse shear stresses in non-dimensional forms, where a, is the least lateral 
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Figure 4: Variation of non-dimensional transverse shear stress xz through the 

thickness of four layer [0/90/0/90] laminate (thickness ratio,  
h/a = 0.25). 

dimension of the plate and q is the magnitude of the applied UDL load 
considered at the plate centre. 

3.1.3 Transverse shear stress distribution in thick sandwich laminate 
Finally, the problem of a three layer square simply supported sandwich laminate 
[0/core/0] having a thickness ratio (h/a = 0.25) has been solved. The thickness of 
both the top and bottom face sheets is taken to be h/10, where h is the total 
thickness of the laminate. The plate is subjected to the sinusoidal loading. The 
material properties of the top and bottom face sheets of this sandwich laminate 
are taken same as in the previous problems and for the middle core are taken as, 
E1= 0.04, E2 = 0.04, E3 = 0.5, G12 =0.016, G13 =G23 = 0.06, ν12 = 0.25, ν31 = 0.25 
and ν32 =0.25. 
     The results of deflections, in-plane normal stresses and transverse shear 
stresses obtained by using the HSDT, proposed combined model and 3D 
elasticity solution (Pagano [34]) are presented in table 1. 
 

Table 1:  Normalized maximum deflections and stresses for a simply 
supported square sandwich [0/core/0] under sinusoidal load at the 
plate centre. 

Theory w  xx  yy  xz  
Equil 

xz  
Const 

yz  

Equil 
yz  

Const 
HSDT 4.304 0.982 0.149 0.2818 0.1410 0.0679 0.0660 
Present 7.637 1.539 0.253 0.2372 0.2552 0.1041 0.1169 
Pagano [34] 7.596 1.555 0.259 0.2386 0.1071 

 
     The deflection is calculated at the midpoint of the plate (x= a/2, y=a/2 and 
z=0) and normalized using amultiplication factor, m=100h3E2/q0a

4. The in plane 
normal stresses xx is calculated at x= a/2, y=a/2 and z= h/2 of the plate, yy is 
calculated at x= a/2, y=a/2 and z=-h/2 of the plate and both are normalized using 
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the multiplication factor, m=h2/q0a
2. The transverse shear stresses xz is 

calculated at the centre of the left edge (x=0, y=a/2 and z=0.0) of the plate and 
normalized using the multiplication factor, m=h/q0a while the transverse shear 
stresses yz is calculated at the centre of the bottom edge (x= a/2, y=0 and z=0.0) 
of the plate and normalized using the multiplication factor, m=h/q0a. 

4 Conclusions 

In this paper a novel numerical model has been proposed in combination of an 
efficient finite element (FE) model based on the refined higher order shear 
deformation theory (RHSDT) with a least square error (LSE) method to 
accurately calculate the deflections as well as stresses for different problems of 
composite and sandwich laminates. The proposed analysis is done in two stages. 
The FE model based on RHSDT is used first which calculates the deflections and 
in-plane stresses more accurately than any other existing 2D plate theory. The 
LSE method is then utilized to accurately predict the transverse shear stresses 
from the results of deflections and in-plane stresses obtained by the FE analysis 
based on RHSDT at the first stage of analysis. It is also interesting to note that 
the displacement fields and the corresponding stress fields used in the RHSDT 
and in the LSE method used in the proposed combined model perfectly matches 
with each other which is not so in case of the combination of HSDT with LSE 
method. Therefore, the proposed combined model may be recommended as the 
most efficient 2D method to accurately calculate the deflections as well as 
stresses (in-plane and transverse) for all types of composites and sandwich 
laminates.  
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