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Abstract 

A method is proposed for characterising components whose geometry rules out 
traditional tensile testing as a means of determining their elasto-plastic 
properties, especially if the components’ manufacturing process is expected to 
have a significant influence on these properties. Suitable sets of material 
parameters are identified that fully characterise both the elasto-plastic and 
indentation behaviour of tested aluminium alloys. Based on a series of finite 
element simulations of Vickers indentations, a surrogate model is built to map 
the elasto-plastic parameters to indentation parameters for a wide range of alloy 
behaviour. The genetic algorithm is then employed to solve the inverse problem, 
that is, to work backwards from indentation to elasto-plastic parameters, 
allowing predictions of stress-strain curves from experimental indentation data. 
The developed characterisation process is shown to be capable of predicting 
quite well the general trends in an alloy’s elasto-plastic behaviour. Scope for 
further work, which could improve the results, is identified. 
Keywords: Vickers hardness, aluminium alloys, elasto-plastic behaviour, 
surrogate modelling. 

1 Introduction 

The elasto-plastic properties are essential input to the analysis of material 
behaviour for the assessment of possible failure mechanisms in machine or 
structural components. In the case of thin material layers, such as those 
encountered in automotive plain bearings, material properties originating from 
experiments on bulk materials are severely modified by the manufacturing 
process. Due to the difficulty in applying traditional testing techniques to such 
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thin and often curved layers, hardness indentation has been proposed and 
investigated as a feasible alternative. There have been numerous experimental 
and analytical studies on the effectiveness and accuracy of this approach. The 
common characteristic of most such studies is the attempt at a direct link 
between indentation output and elasto-plastic properties based on purely solid 
mechanics considerations. Tabor’s classical work [1] has been the basis and 
inspiration of this approach whose scope has been significantly expanded 
through the systematic use of finite element (FE) modelling [2, 3]; the latter has 
more recently been combined with load-indentation data from instrumented 
nano-hardness tests [4]. 
     Surrogate modelling or meta-modelling techniques have been applied to 
material characterisation as a means of interpolating between experimental or 
FE-simulated data and thus obtaining optimum correlation between these data 
and material properties with considerably reduced computational effort [5]. Such 
approaches for predicting elasto-plastic material parameters have been based on 
results from instrumented nano-indentation tests [6, 7], which are highly 
demanding in both specimen preparation and equipment.  
     The aim of the present work is to apply a general methodology for 
determining elasto-plastic material properties from relatively simple micro-
hardness tests, which allow the measurement of hardness within a few 
millimetres of material thickness. There has been one such previous attempt [8] 
based on the assumption that micro-hardness indent size variation with load 
depends strongly on the elasto-plastic properties of such thin layers. This 
hypothesis is again tested by providing further experimental evidence of both 
tensile and indentation behaviour, alternative choices of characterisation 
parameters and the application of a more versatile surrogate modelling tool, 
which includes the optimisation routine required for the solution of the inverse 
problem. 

2 Methodology 

The Vickers micro-hardness testing technique uses a square-based diamond 
pyramid as an indenter. The actual test data used for elasto-plastic 
characterisation are the diagonal size of the permanent indentation  and the 
corresponding applied load P so that experimental P- relations can be 
generated. Rather than being extracted from a rigorous theoretical analysis of the 
micro-hardness test results, here elasto-plastic information for a new material is 
identified as that leading to the numerical prediction of the same load-indentation 
characteristics as the experimental ones. This inverse problem can only be solved 
through an iterative scheme within an optimization algorithm. A great advantage 
of this approach is the flexibility in choosing sets of either material or 
indentation parameters. 
     The finite element (FE) method can be used to link numerically known elasto-
plastic stress () – strain () relations with respective indentation output. Since 
however the repeated FE simulation of indentations required by an optimisation 
scheme would have been computationally very expensive and made 
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Figure 1: Flow chart of the adopted characterisation process. 
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the application of the method practically impossible, surrogate modelling is 
adopted as an alternative means of correlating a given set of material data with 
indentation behaviour. Building up a reliable surrogate model requires a 
substantial amount of data, which can be obtained through either a prolonged 
experimental programme or multiple FE simulations of the indentation process. 
The latter is more versatile since it admits any set of material data thus ensuring 
their uniform distribution within their ranges.  
     Initially, micro-hardness tests are carried out on a small number of specimens 
with known, wide-ranging – characteristics, which provide the key parameters 
describing as accurately as possible elasto-plastic material behaviour and are 
used as input to FE indentation analyses performed solely for validation 
purposes. Once the reliability of the FE predictions is established, an expanded 
database of P-  curves is generated by running the FE model for realistic ranges 
of the adopted material parameters. This larger database is used for training 
surrogate modelling schemes approximately relating the indentation to material 
parameters. Based on iterative application of the most appropriate surrogate 
model within an optimisation algorithm, the properties of a material with given 
experimental micro hardness P- curves can be determined. A flowchart of the 
methodology is shown in fig. 1. 

3 Experiments 

3.1 Tensile tests 

Three aluminium alloy grades were tested: Al 1050, Al 8090 T3 and a general 
purpose alloy designated GP. Multiple specimens of each grade were prepared 
according to ASTM standards [9] and the tests were performed on an Instron rig 
with a constant cross-head velocity of 1 mm/min. Consistent behaviour was 
observed between specimens of the same grade. The raw data were initially 
recorded as load and engineering strain and eventually converted to true stress 
()-logarithmic strain () data. The latter are plotted in fig. 2 together with the 
data from three more, previously tested aluminium alloys, designated B1Q2, 
VQ1B and AS1241 [8]. 
     A commonly used model for the -  relation is the equation 
  = An (1) 
where A and n are known as the strain hardening coefficient and strain hardening 
exponent respectively [10]. However, this equation very rarely represents 
accurately the entire experimental - curve but rather part of it starting from 
point (1, 1) beyond the yield point (Y, Y). A second order polynomial can be 
used to represent the experimental - relation between these two points with 
satisfactory accuracy. The coefficients of the fitted polynomial can be expressed 
in terms of Y, 1, A and n, therefore these four parameters suffice to characterise 
elasto-plastic behaviour; their values were extracted from the curves of fig. 2 and 
listed in table 1.    
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Figure 2: Experimental - curves for the tested aluminium samples. 

 

Table 1:  Elasto-plastic and Vickers hardness characterisation parameters for 
the tested aluminium samples. 

 

Material Y 
(MPa) 

1 
(MPa) 

A 
(MPa) 

n B(a) m 

B1Q2 415.1 455 703.4 0.0881 0.0369 2.1634 
8090 T3 217 265.3 626 0.2181 0.0552 2.0006 

GP 144.9 187.5 355.5 0.1574 0.0133 2.1595 
VQ1B 39.95 87.44 390.7 0.2767 0.0133 2.1595 

AS1241 39.81 98.7 358.1 0.3014 0.0190 2.0427 
1050 66.6 124 126.3 0.0042 0.0214 1.9842 

             (a)B was evaluated with P measured in g and  in m. 

3.2 Vickers tests 

Specimens were prepared from the same three aluminium alloys according to the 
relevant ASTM standards [9]. The samples were mounted on to a thermosetting 
plastic and then their surface was smoothed to improve the definition of the 
indentation edges. The load P was applied through the standard diamond square-
based pyramid Vickers indenter for a period of 20 s and the indentation diagonal 
 was measured to within 0.5 m. Five indentations were made at each load. 
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     The experimentally obtained P- relations are plotted in fig. 3. Data from the 
previously tested aluminium alloys, B1Q2, VQ1B and AS1241 [8]  are also 
included in fig. 3. Since the motivation for the development of this methodology 
was the characterisation of aluminium linings in automotive plain bearings, a 
typical aluminium alloy used for this purpose was also tested. Samples were 
supplied by the manufacturer for a bearing design designated MAS16 in three 
forms: aluminium sheet before bearing manufacturing, multi-layer flat bar and 
formed bearing half-shell. The data from these three samples show clearly the 
significant effect of the manufacturing process on the elasto-plastic properties of 
the aluminium lining. Collectively, the data of fig. 3 provide a good indication of 
the characterisation range. 
     All experimental Vickers data were fitted to the empirical relation 
 P = Bm (2) 
which is a variation of Meyer’s law. This approximation proved to be very good 
with the fitted curves having a regression coefficient R2 > 0.999. Thus, 
parameters B and m were assumed to characterise fully the load-indentation 
curve and were adopted as the independent variables of the developed surrogate 
model. 
 

 

Figure 3: Vickers indentation data. 

,
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4 Characterisation 

4.1 Finite element modelling 

Vickers indentations were simulated using the FE model developed in the 
context of the previous characterisation project at Southampton [8]. This axi-
symmetric model was validated by comparing its predictions with those obtained 
from a three-dimensional simulation of the equivalent pyramid indentation as 
well as experimental indentation data. The model’s sensitivity to mesh 
refinement, far-field boundary conditions and various contact modelling 
parameters was thoroughly investigated. 
     The program was again validated using the experimental data from section 3. 
Two - inputs were used: one comprising the experimental data, adjusted to 
constitute a smooth curve with a constantly decreasing gradient and another 
recreated by the curve fitting process described in section 3.1 using the 
characterisation parameters of table 1. The Young’s modulus E extracted from 
the tensile test data was approximately equal to 70 GPa and this value was 
adopted in all FE simulations of Vickers indentations. It is expected that the 
indentation predictions would be insensitive to Young’s modulus variations since 
elastic deformation was removed from both the experimental and numerical P- 
records. 
     The agreement of FE predictions of indentation behaviour, for both sampled 
and fitted stress-strain input, with the respective experimental data presented in 
section 3.2 was considered satisfactory. These predictions were also consistent 
with the empirical law represented by eqn (2). The FE model was thus found an 
acceptable means of generating simulated databases for surrogate modelling. 

4.2 Surrogate model 

4.2.1 Background 
The objective of the surrogate modelling is to replace an expensive function f 
mapping a set of inputs x to a set of outputs y with a simpler approximate 
function     in order to reduce the computational cost of evaluating y for a new 
set x. A surrogate model is based on a number of observations called training 
data; it can be considered as a multi-dimensional curve regression. In the present 
problem, f is the FE model, set x comprises the plasticity parameters (Y, 1, A, 
n) while y corresponds to the indentation set (B, m). Thus, in the present case, the 
surrogate model has the form 

(B, m) = f̂ (Y, 1, A, n) 

     For this characterisation project, surrogate modelling was performed using the 
SUMO software [11], which is freely available for academic use, it is well 
documented [12] and it interfaces with MATLAB. 

4.2.2 Training data 
A random selection of fictitious values for the set (Y, 1, A, n) was generated 
using a relevant MATLAB script. The selection was subjected to the constraints: 

f̂
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 Y < 1, Y = Y/E < 1 = (1/A)1/n. 
 1 = (1/A)1/n < 0.02 so that the polynomial portion of the - curve is 

kept within realistic limits. 
 The gradient of the polynomial at (Y,Y) must be lower than the Young’s 

modulus (E = 70 GPa). 
 The gradient at (1,1) must be lower than at (Y,Y) since the gradient of 

the - curve must decrease with strain. 
     A reasonably even spread of 95 - curves were produced. The same 
MATLAB script also compiled the FE input file for each fictitious alloy. The 
simulated indentation parameters (B, m) were obtained by running the FE 
program for each (Y, 1, A, n) set and fitting eqn (2) to the output.  

4.2.3 Validation 
It was considered important to check whether the surrogate model returns a 
similar output to that produced by the FE model it replaces. For this purpose, ten 
additional (Y, 1, A, n) sets, not included in the training data, were randomly 
generated. Both the FE and the surrogate model were run with these input data 
and the corresponding outputs were compared. The load-indentation diagonal 
relations predicted by FE and SUMO were in excellent agreement. It was thus 
demonstrated that the surrogate model accurately recreates FE results. 

4.3 Optimisation 

4.3.1 Objective function 
A numerical optimisation analysis is required for the solution of the inverse 
problem, that is, the determination of a material parameter set from a known 
indentation parameter set. The objective is to minimise an error function of the 
form 

 
2 2

test test

range( ) range( )

B B m m

B m


    
    
   

 (3) 

where  is also known as the objective function, Btest and mtest are the indentation 
parameters of the test alloy whose elasto-plastic properties are sought. The 
variation of B and m with the elasto-plastic parameters within the optimisation 
process is provided by the surrogate model.  

4.3.2 Genetic algorithm 
The adopted optimisation tool in this characterisation project was a genetic 
algorithm (GA) package available in MATLAB. Genetic algorithms are so called 
because they mimic biological evolution. An initial population of potential 
solutions (the individuals) are created in the problem domain using a random 
number generator. The individuals’ performance in the problem domain (fitness) 
is assessed by the objective function. Individuals are selected for reproduction 
according to a selection function; the best individuals have a higher probability 
of being selected. Each individual is encoded with a unique string (or genotype), 
just as genetic information is encoded in chromosomes in the natural world. 
Reproduction combines the parents’ genes to create offspring. A proportion of 
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the offspring may alternatively be created by random mutation of the parents’ 
genes in an attempt to widen the search space and encourage genetic diversity. 
This is supposed to reduce the likelihood of early convergence to a sub-optimal 
solution. Only by decoding the offspring’s genotype can their performance in the 
problem domain (phenotype) be assessed. The cycle then repeats to create 
successive generations. The offspring’s performance is expected to improve with 
each generation, whilst less fit individuals are allowed to die out. When a pre-set 
termination criterion is met, the algorithm stops, for example, when a set number 
of generations have passed without improvement in the fitness of the population. 
Additional features may be incorporated such as migration between sub 
populations. This is supposed to encourage genetic diversity. 
     The MATLAB GA comes with various options for creation, selection, 
reproduction, mutation and migration functions.  

4.3.3 Selection of GA options 
GA options and functions were adopted through a process of repeated trials and 
gradual improvements. The initial population was seeded with individuals 
having similar indentation characteristics to those of the tested alloy. Seeding 
gives the GA a legitimate starting point and it was not found to narrow the search 
space or cause early convergence. The rest of the initial population were created 
between upper and lower bounds and adhering to the same constraints as 
described in section 4.2.2 for training data production. These constraints kept the 
population realistic. 
     The population size was set at 100. The argument in favour of a large initial 
population is that it minimises the chance of not searching part of the problem 
domain. Populations larger than 100 were tested but no noticeable improvement 
was observed; the optimisation merely took longer. 
     A scaling function ranked individuals from best to worst based on their value 
of . Selection was achieved using a roulette wheel approach, that is, parents 
were allocated a segment with area proportional to their expectation after being 
ranked. A random number generator was then used to simulate where the roulette 
wheel would stop. The best 10% of the population were guaranteed to survive 
into the next generation to preserve individuals with favourable genes. 
     Mutation was used to create 50% of all offspring in an attempt to encourage 
genetic diversity. It was found that the GA converged prematurely if using the 
default setting of 20%. Reproduction was selected to be Heuristic which creates 
offspring that lie randomly on the line containing the two parents, nearer to the 
parent with the better fitness value, in the direction away from the parent with 
the worse fitness value. Migration between populations was not found to produce 
better solutions though this could be because the genetic diversity achieved by 
having a large population and high mutation fraction obscured any effects of 
migration. 

5 Results 

Three fictitious test alloys, chosen deliberately to cover a wide range of 
indentation behaviour, were used to assess the accuracy of the GA predictions. 
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The characterisation predictions, along with the actual stress-strain behaviour for 
these alloys, are plotted for comparison in fig. 4. If this methodology is applied 
to the characterisation of a real component, the user would not have the benefit 
of knowing the actual stress-strain curves (solid lines in fig. 4) for comparison 
and thus no way of assessing the accuracy of the predictions. However, if the 
predictions in the figure are typical across the full range of alloy behaviour 
explored in this characterisation project then they provide some confidence in the 
reliability of the adopted methodology. 

 

Figure 4: Characterisation predictions (dotted lines) plotted with the - 
curves of the “tested” alloys (solid lines). 

     The GA did not arrive at the same prediction twice; this can be attributed to 
the nature of GAs which start with a population mostly comprising random 
guesses. The random initial population is different each time the algorithm runs 
so naturally the end results differ slightly. The predictions follow the general 
trend of the test alloys reasonably well, that is, there are three distinct groups of 
predicted curves in fig. 4, each clustered around that of the test alloy which they 
were intended to reproduce. It is reasonable to assume that if further runs were to 
be conducted, the GA solutions would be in the same range as those already 
observed; the nature of the GA is to kill off particularly wayward solutions. As 
for the accuracy of individual material parameter predictions, Y appears 
particularly difficult for the method to predict, sometimes underestimated by up 
to 50%. Predictions for 1 and A are much closer, reliably within 10% of the test 
alloy values, whilst n is typically within 25% of the test alloy value.  
     As a check, the surrogate model was called manually with the GA’s 
predictions after each optimisation was completed. The model confirmed that 
each GA solution was indeed an alloy with the same B and m as those of the test 
alloys, correct to four decimal places. This is the same precision that test alloy 
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parameters were entered in the objective function. This could imply that multiple 
solutions exist and that each time the algorithm was run a new solution was 
discovered. However, it may simply mean that Btest and mtest were not specified 
with a great enough precision in the objective function for the algorithm to locate 
the global minimum.  
     As a further test, the GA was run with the correct solution seeded in the initial 
population. When given the test alloy parameters, the GA confirmed them as a 
solution. The minimum value of the fitness function in these cases was no less 
than when running the GA properly, that is, with random initial guesses. This 
supports the theory that the process, at this level of its development, generates 
multiple acceptable solutions.  

6 Conclusions 

In conclusion, the GA, combined with SUMO, is able to predict the general trend 
of an alloy’s stress strain curve, but with room for improvement. It is worth 
noting in the results of fig. 4 that predictions for the test alloy in the middle of 
the meta-model range are more consistent with the target stress-strain curve than 
in the other two cases lying closer to range’s edges. It may therefore be possible 
to enhance the effectiveness of the methodology by widening the range of 
material behaviour so that realistic alloy data always lie well within it. 
     The adopted method of selecting the training data may not have produced an 
even distribution of the independent variable set (Y, 1, A, n) within their 
ranges. This can be achieved by software developed for this purpose such as the 
Latin Hypercube sampling strategy [13], which is actually a feature of the 
employed SUMO toolbox.  
     Among the various elasto-plastic parameters, the largest discrepancy is noted 
in the prediction of the yield stress. In this respect, significant improvement 
could be achieved using Tabor’s empirical relation between yield stress and 
Vickers hardness number [1] to seed the initial population with individuals 
having likely yield stresses.  
     There was significant difference between the indentation parameters B and m 
obtained from the experimental P- record and those resulting from the 
corresponding FE simulation. The apparent good agreement between 
experimental and simulated P- curves means that B and m are very sensitive to 
small variations in this relation. This issue could be addressed by having a denser 
set of experimental indentation data and further validation of the FE model. 
Improving the quality of the experimental output from both tensile and hardness 
tests would also contribute to removing this discrepancy. Specifying a greater 
precision on the values of B and m in the objective function would allow fitness 
to be assessed to a correspondingly greater precision which may aid the GA in 
locating the optimum solutions.  
     The accuracy with which ANSYS can predict indentation data influences the 
accuracy of the entire methodology. Testing of the surrogate model and 
optimisation stages has been conducted only using fictitious alloys; this has 
masked the problem to some extent. The methodology could only be applied to 
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real alloys if the accuracy of the FE element simulations used to create training 
data is improved; this would enable a surrogate model to be generated that is 
capable of reliably predicting real indentation data from real elasto-plastic 
parameters. 
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