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Abstract 

Slurry erosive wear as a failure mechanism has significance in terms of dictating 
the performance of marine components. Experimental determination of this wear 
phenomenon for various materials in current naval applications is tedious, 
expensive and, in the majority of cases, not reliable. The standard experimental 
procedures in assessing the slurry erosive wear do not simulate the actual 
operating conditions. Researchers have been focusing on predictions of wear 
behaviour based on several hypotheses and mathematical models as a response to 
overcome the above mentioned obstacles. The fuzzy logic approach is a highly 
reliable analytical technique and therefore widely accepted and used. 
     This paper discusses a fuzzy logic model to predict the slurry erosive wear 
behavior of cast aluminum 6061 (Al 6061) alloy pre and post heat treatment. The 
adopted fuzzy model employs hybrid-learning techniques involving a 
combination of both back-propagation and least-square method. Sand 
concentration, test duration, slurry rotation speed and impinging particle sizes 
served as inputs while slurry erosive wear losses were the outputs. The predicted 
values have been compared with published experimental data under various 
operating conditions. The predicted values of slurry erosive wear loss of cast 
aluminum 6061 alloy pre and post heat treatment are in close agreement with the 
experimental results. 
Keyword: fuzzy logic, Al6061, slurry erosive wear. 
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1 Introduction 

In recent years, the use of aluminum and its alloys has significantly increased in 
several engineering applications, such as: marine, aerospace, automobile and 
chemical industries. Structural integrity and durability suffers from corrosion 
related deterioration in conventional materials [1–3]. Aluminum offers high 
strength to weight ratio, excellent corrosion resistance coupled with enhanced 
surface finish characteristics [4]. 
     However, these alloys in many afore- mentioned engineering sectors do result 
in severe wear leading to maintenance, durability and reliability associated 
issues. These issues bring health and safety and financial implications. In 
addition the presence of aggressive corrosive media especially in industries such 
as slurry handling plants will accelerate the component wear leading to 
catastrophic failures [5]. Hence, serious attempts have been made by researchers 
to focus on the experimental determination of different modes of wear with 
regard to aluminum and its alloys under several operating conditions using 
standard test procedures [6–9]. However, these standard techniques for assessing 
their wear properties are sometimes complex and may not simulate the actual 
working operating conditions leading to spurious and unrealistic data. There is a 
need to generate reliable test database to assess the suitability of the developed 
alloys with optimized wear resistant properties for specific applications. This 
process is quite long and tedious. To address this problem researchers have 
focused on prediction of wear properties of aluminum alloys using various 
analytical approaches. Ramesh et al. have reported the prediction of adhesive 
wear behavior of Al6061 based composites using Yang and Archard models with 
1 to 7% error range [10]. Hassan et al. have proposed a model for evaluation and 
prediction of slurry erosion wear loss of 5127 steels with error ranging from  +14 
to -7% [11]. These analytical models do emphasize on individual effect of design 
factors rather than the holistic approach of the wear phenomenon. This limits the 
accuracy in predictions from these models; hence, with the advances in 
computing techniques, researchers are now exploiting fuzzy logic tools for 
accurate predictions of various phenomena in different applications that include 
material science, tribology, aerospace, and automotive [10–15]. Fuzzy logic 
model can build nonlinear functions of arbitrary complexity based on experience 
of experts and are flexible to design the control system [16].  
     However, no information is available to predict wear behavior of aluminum 
and its alloys by fuzzy logic approach.  Current research focuses on the use of 
appropriate fuzzy model to predict the slurry erosion wear behavior of cast 
Al6061, which is the most, sought after material for many of the marine and 
slurry handling components. 

2 Experimental details 

Slurry erosion tests were carried out as per ASTM G75-07 standard on polished 
samples of size 8mm thick, 8mm width and 40mm length. The samples were 
thoroughly cleaned in acetone and weighed using an electronic microbalance 
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before and after the wear test. The accuracy of electronic balance was 10-1mg. 
The details of the test set up and complete experimental procedure is described in 
our earlier published work [4]. 

3 Methodologies 

3.1 Architecture of Adaptive Neuro Fuzzy Inference System (ANFIS) 

ANFIS is a type of neural network that is based on Takagi–Sugeno fuzzy 
inference system. In this work, ANFIS architecture is being adopted owing to its 
unique advantages. It computes the membership function parameters that best 
allow the associated fuzzy inference system to track the input/output data.  Two 
techniques in ANFIS are adopted in updating the member parameters resulting in 
the fine tuning of variable parameters that define the membership functions. One 
such is gradient descent and the other is least square methods.  However, in this 
work, the hybrid technique of learning which is a combination of the gradient 
descent method and the least-squares method is being used because of its several 
advantages. The flow chart of hybrid learning procedure for ANFIS is shown in 
Fig. 1 [14]. During training in ANFIS, 65 sets of experimental data of slurry 
erosive wear loss of cast Al6061 alloy before and after heat treatment and 
remaining  sets of experimental data are taken as testing data to check accuracy 
of fuzzy logic which comes nearer to 95–98% when compared to experimental 
ones have been used to conduct 500 cycles of learning. 
 
 

 

Figure 1: Flow chart of hybrid learning process. 
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3.2 Fuzzy Inference System (FIS) 

The ANFIS model was developed using Matlab fuzzy logic tool. A fuzzy 
inference system (FIS) essentially defines a nonlinear mapping of the input data 
vector into a scalar output, using fuzzy rules. The mapping process involves 
input/output membership functions, FL operators, fuzzy if–then rules, 
aggregation of output sets, and defuzzification. A block diagram of a fuzzy 
inference system (FIS) is shown in Fig. 2. It consist of four components namely 
fuzzifier, inference engine, rule base and defuzzifier.  

 

Figure 2: Block diagram of fuzzy inference system. 

     Fuzzification stage is used to convert the measured quantities (sand 
concentration, test duration, slurry rotation speed and impinging particle sizes) 
from the process into fuzzy sets to be used by the inference stage. However if 
there is a process or measurement noise, it is accounted by creating fuzzy sets for 
the measured quantities. In the second step, inference engine defines mapping 
from input fuzzy sets into output fuzzy sets, which determines the degree to 
which the antecedent is satisfied for each rule. If the antecedent of a given rule 
has more than one clause, fuzzy operators are applied to obtain one numeric 
value that represents the result of the antecedent for that rule. Possibilities are 
that one or more rules may fire simultaneously. Outputs for all the rules are then 
aggregated. The rule base contains linguistic rules that are provided by experts or 
extracting rules from numeric data. In the present work, the linguistic rules are 
formulated based on the available numerical data. Slurry erosive wear depends 
on several parameters such as hardness of the materials, erosive particle type, 
size and shape, concentration of erosive particles in the slurry and rotational 
speed. A total of 128 appropriate linguistic rules based on the conditions are 
created such as IF, AND, THEN statements which can be obtained through 
appropriate relations. The present work has made use of the relations such as 
very -very low, very low, medium, high, very high, very-very high. 
     Once the rules have been established, the FIS can be viewed as a system that 
maps an input vector such as sand concentration, test duration, slurry rotation 
speed and impinging particle sizes to an output slurry erosive wear vector. The 
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fuzzifier maps input numbers into corresponding fuzzy memberships in order to 
activate the rules that are in terms of linguistic variables [17].  
     Defuzzification maps the output fuzzy sets into a definite number. Several 
common methods for defuzzification in practice includes the centroid, 
maximum, mean of maxima, height and modified height defuzzifier. The 
centroid method of defuzzification method is been adopted in this work which 
calculates and returns the center of gravity of the aggregated fuzzy set. 
Modelling of slurry erosive wear has been performed by using fuzzy model 
considering four input parameters and one output parameter.  The four input 
parameters are sand concentration, particle size, time duration and rotational 
speed as reported in Table 1 while the output is slurry erosive wear in terms of 
weight loss. A schematic block diagram of the adopted FIS is shown in Fig. 2.  

Table 1:  The input parameters. 

Sand Concentration(g/ltr) Particle Size(µm) Time 
Duration(hrs) 

Speed(rpm)

100-400 106-625 5-25 500-1500 

4 Results and discussion  

4.1 Effect of slurry concentration and test time 

Fig. 3 shows the combined effects of slurry concentration and test time on both 
the predicted and experimental slurry erosive wear loss of unheat treated and 
heat treated cast Al6061alloy. It is observed that the mass loss of unheat treated 
and heat treated cast Al6061 alloy increases with increase in both test time (up to 
20hrs) and slurry concentration (up to 250g/litre) with other parameters being 
constant at their average values. A maximum of 0.2275g (experimental) and 
0.2281g (predicted) mass loss are observed for unheat treated cast Al6061 alloy. 
The increased slurry erosive mass loss with increase in slurry concentration and 
test duration can be attributed to the following reasons. 1) Increased 
concentration of sand results in more abrasive action, enhancing the probability 
of the material removal by ploughing and micro cutting. 2) Increase in test 
duration results in more corrosive attack of the alloy due to presence of NaCl in 
slurry leading to material removal due to combined process of erosion and 
corrosion.  The decrease in mass loss is observed beyond slurry concentration of 
250g/l and test duration of 20hrs, which can be attributed to the following 
reasons. 1) Very high sand concentration at a given rotational speed results in 
lowering of impinging velocity of the abrasive sand particles, which in turn 
reduces the extent of surface damage. 2) Very high-test durations for a given 
slurry concentration and rotational speed leads to fragmentation of the abrasive 
silica particles losing its sharp edges. This phenomenon results in lowering the 
erosion effect. However for a given test duration and slurry concentration, ice 
quenched Al6061 possess minimum weight loss of 0.1696g (experimental) and 
0.1725g (predicted) when compared with air and water quenched heat treated 
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                   (A) Unheat treated                               (B) Air quenched 

    
                    (C) Water quenched                               (D) Ice quenched 

Figure 3: 3D surface plot of slurry erosive wear (mass loss) v/s sand 
concentration and test time for unheat treated and heat treated 
conditions.  (Dots represent experimental data.) 

alloys. For any given slurry concentration and test duration, the predicted mass 
loss from the developed fuzzy model matches closely with the experimental 
ones. The average error between the experimental and the predicted slurry 
erosive mass loss ranges between 1 and 3%. 

4.2 Effect of impinging particle size and slurry concentration 

Fig. 4 shows the combined effect of impinging particle size and slurry 
concentration on both predicted and experimental erosive wear loss of unheat 
treated and heat treated cast Al6061alloy.  It is observed that increase in the 
particle size and sand concentration results in increase in mass loss for both 
unheat treated and heat treated cast Al6061 alloy. For a sand particle size of 
300µm with slurry concentration maximum mass loss of 250g/l has been 
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observed. A maximum of 0.1481g (experimental) and 0.1497g (predicted) mass 
loss are observed for unheat treated cast Al6061 alloy. However, ice quenched 
Al6061 alloy exhibit minimal slurry erosive wear loss among all studied 
quenching media for all the particle size and slurry concentration under 
investigation. The average error between the experimental and predicted slurry 
erosive mass loss ranges between 1 and 3.5%.  Increase in slurry erosive wear 
loss with increase in particle size can be attributed to increase in surface area. 
Larger surface contact area leads to increased levels of stresses both at surface 
and sub surface levels. This contributes to higher plastic deformation which is 
one of the important mechanisms for material removal during slurry erosion 
process. 
 

  
                   (A) Unheat treated                               (B) Air quenched 

  
                    (C) Water quenched                               (D) Ice quenched 

Figure 4: 3D surface plot of slurry erosive wear loss (mass loss) v/s sand 
concentration and impinging particle size for unheat treated and 
heat treated condition (Dots represents experimental data). 

4.3 Effect of test time duration and speed of slurry rotation 

Fig. 5 shows variations of predicted slurry erosive wear loss for different slurry 
rotational speeds and test durations. It is observed that increasing the test 

Surface Effects and Contact Mechanics XI  115

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 78, © 2013 WIT Press



duration and speed of slurry rotation results in increased mass loss for both 
unheat treated and heat treated cast Al6061 alloy. It is observed that increase in 
the slurry rotation speed and test duration results in increased mass loss for both 
unheat treated and heat treated cast Al6061 alloy. Maximum mass loss is 
observed at a slurry rotational speed of 1200 rpm with the test duration of 22 hrs. 
Increase in slurry erosive mass loss with increased slurry rotational speed. This is 
attributed to increased kinetic energy of the abrasive sand particles. Increased 
kinetic energy of the abrasive particles results in their enhanced collisions with 
the targeted alloy surface. Larger the probability of collisions, higher will be the 
extent of surface damage of the targeted alloy leading to increased levels of 
wear. 
 

  
(A) Unheat treated                   (B) Air quenched 

  
                (C) Water quenched                  (D) Ice quenched 

Figure 5: 3D surface plot of slurry erosive wear loss (mass loss) v/s test time 
and speed of slurry rotation for unheat treated and heat treated 
condition (Dots represents experimental data). 
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     The average minimum and maximum errors between experimental and 
predicted results are found to be 2% and 5% respectively. However ice quenched 
Al6061 alloy do exhibit minimal slurry erosive mass loss at all the test durations 
and slurry rotational speed with all other parameters such as impinging particle 
size and sand concentration being maintained constant at their average values. 

4.4 Effect of speed of slurry rotation and impinging particle size 

Fig. 6 shows the combined effects of impinging particle size and slurry rotational 
speeds on both predicted and experimental erosive mass loss of unheat treated 
and heat treated cast Al6061 alloy. It is observed that increasing the particle size  
 
 

  
                  (A) Unheat treated                   (B) Air quenched 

   
              (C) Water quenched                              (D) Ice quenched 

Figure 6: 3D surface plot of slurry erosive wear loss (mass loss) v/s 
impinging particle size and speed of slurry rotation for unheat 
treated and heat treated condition (Dots represents experimental 
data). 
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and speed of slurry rotation results in increased mass loss for both unheat treated 
and heat treated cast Al6061 alloy. Maximum weight loss is observed for a slurry 
rotational speed of 1200 rpm and particle size of 400 µm.  
     The minimum and maximum experimental slurry erosive wear losses are 
0.0483g and 0.1019g respectively.  The minimum and maximum predicted slurry 
erosive wear losses are 0.0488g and 0.1025g respectively. The error between the 
experiments and the predicted slurry erosive wear loss ranges between 1-4%. 
However ice quenched Al6061 alloy do exhibit minimum slurry erosive wear 
loss at all particle sizes and slurry rotational speeds with other parameters such 
as test time durations and sand concentration being maintained constant at their 
average values. The excellent slurry erosive wear resistance under all test 
conditions investigate for heat treated Al6061 alloys are mainly attributed to the 
following reasons. 1) Improved hardness on solutionizing and quenching 
followed by artificial aging. 2) Grain size reduction on heat treatment. Ice 
quenching do result in maximum improvement of hardness as well grain size 
reduction leading to superior slurry erosion wear resistance.     

5 Conclusions  

An appropriate fuzzy model has been developed to predict the slurry erosive 
wear loss of cast Al6061 alloy pre and post heat treatment. The predicted   
results are in close agreement with experimental results. It has been observed 
that at all sand concentration, impinging particle size, slurry rotation speed and 
time ice quenched Al6061 demonstrated least slurry erosion wear loss when 
compared with air, water quenched and unheatreated cast Al6061 alloy. 
Maximum slurry erosive wear loss of cast Al6061 alloy as predicted and 
experimentally observed occurs at a sand concentration of 250g/l, slurry 
rotational speed of 1200rpm, test duration of 20-22hrs and particle size of 300–
400µm.   
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