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Abstract 

By drawing on analytical solutions to contact problems in the literature, an 
approach is developed for obtaining two-dimensional, elastic, edge-of-contact 
stresses in blade attachments in gas turbines.  The approach is validated on a 
benchmark problem.  It uses stress resultants from finite element analysis (FEA):  
stress resultants converge more rapidly than stresses themselves, so that such 
FEA is less demanding.  In addition to reducing FEA, the analytical approach 
reveals with explicit expressions the nature of edge-of-contact stresses in blade 
attachments.  In particular in this regard, it identifies a hoop stress component 
right at the edge of contact that is potentially damaging to blades. 
Keywords: two-dimensional conforming contact, contact with friction, elastic 
contact stresses. 

1 Introduction 

At this time, gas turbine engines are the norm for powering larger planes in 
commercial and military use.  In addition, land-based gas turbines have largely 
replaced reciprocating engines as power generators.  Essential to the success of 
gas turbines in both roles has been the engineering of sufficient structural 
reliability.  A key aspect of this engineering effort has been the design of fan 
blade attachments to fan hubs or rotors.  While the structural integrity of these 
attachments has improved with time, failures do still occur.  The intent of the 
work reported here, then, is to offer a means of gaining increased understanding 
of the critical edge-of-contact stresses occurring in blade attachments in gas 
turbines:  such understanding can aid in achieving yet better structural integrity 
of attachments. 
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     A cross section of a typical dovetail blade attachment used in aircraft engines 
is shown in fig. 1.  Therein the base of one blade in a fan is restrained from 
moving radially outward (upwards in fig. 1) when rotating by contact on two 
flats (C-C' in fig. 1) within its portion of the rotor.  Attachments of this ilk are 
common in the aircraft industry.  Fir tree attachments with multiple pairs of 
contacting flats are also used in the industry, as well as in power generation. 

 

Figure 1: Cross section of a dovetail attachment of a blade base to a rotor. 

     With slipping on the contact flats during loading up to peak rpm, tensile edge-
of-contact stresses are produced in the blade and the rotor (at C and C', 
respectively, in fig. 1).  With even minor variations in operating rpm, these 
tensile stresses can fluctuate significantly and thus initiate fatigue cracks that 
ultimately lead to failure.  Understanding these tensile edge-of-contact stresses 
that are the root causes of these failures is of fundamental importance in trying to 
design against failures. 
     Finite element analysis (FEA) offers a means of making a determination of 
the edge-of-contact stresses in blade attachments under varying operating 
conditions.  One of the attributes of FEA is its ability to simulate entire 
geometries like that shown in fig. 1.  Nonetheless, FEA faces some challenges in 
accurately resolving the local edge-of-contact stresses present.  In the first 
instance this is because these stresses have high gradients, indeed even infinite 
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gradients right at the edge of contact.  In the second this is because the expanded 
contact region within which the peak contact stresses occur is itself quite small 
(typically about 1% of the contact flat at maximum rpm).  Thus FEA must not 
only resolve stresses with severe gradients but also make a sufficiently accurate 
determination of the region within which these stresses act. 
     Over the years a number of papers have reported attempts to use FEA to 
capture edge-of-contact stresses in blade attachments in gas turbines (see Sinclair 
et al. [1] for references).  These finite element treatments are all within the 
context of two-dimensional elasticity.  The most refined mesh employed has 
contact elements with extents that are of the order of 1/100 of the edge radius, 
itself a small dimension.  While results from this FEA are consistent with a 
numerical analysis that has converged to within 4% for some of the edge-of-
contact stresses, for the crucial tensile stress convergence remains problematic. 
     Here, therefore, we adopt a different approach.  We use FEA to its best 
advantage, namely simulating an entire geometry like that of fig. 1, but then only 
require the FEA to determine stress resultants on contact flats.  Being integrals of 
stresses, resultants are far less sensitive to severe stress gradients, and are also 
fairly insensitive to precise extents of contact.  Thereafter we use an analytical 
approach to obtain edge-of-contact stresses.  This analytical approach is based on 
an adaptation of the two-dimensional, closed-form, elastic solution for a flat 
punch with rounded edges indenting an elastic half plane given in Shtaerman [2].  
The intent of employing this analytical approach is not only to improve the 
resolution of edge-of-contact tensile stresses but also to increase understanding 
of edge-of-contact stresses by furnishing some closed-form expressions for key 
contributions.  
     In what follows, we begin in Section 2 by describing in greater detail the 
specific blade attachment used to demonstrate the application of the analytical 
approach.  Thereafter, in Sections 3, 4 and 5, we develop the analytical approach 
used for the contact stress then other edge-of-contact stresses.  To validate the 
approach, in Section 6 we compare with what we believe to be the most 
accurately determined edge-of-contact stresses found with FEA.  We close in 
Section 7 with remarks on some consequences of the approach in general. 

2 Contact configuration 

The cross section of a dovetail blade attachment shown in fig. 1 is, in fact, the 
one chosen for demonstrating the analytical approach developed subsequently.  
This choice is primarily because this is the attachment that has been subjected to 
the most refined FEA we are aware of in [1]:  in addition, we can obtain the 
necessary specifications from [1] for this attachment. 
     The cross section in fig. 1 is assumed to be in a state of plane strain out of the 
plane of the figure.  Furthermore, the force F induced by the rotation of the blade 
is assumed to be shared equally by the two contacting flats restraining the blade.  
Then the cross section in fig. 1 is symmetric about its center line, and it suffices 
to consider but one of the contacting flats. 
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Figure 2: Contact geometry and coordinate; local stresses. 

     The local contact configuration for the right most restraining flat is shown in 
greater detail in fig. 2.  Therein L is the length of the contact flat that is common 
to both the blade and the rotor, and this flat is inclined at an angle   to the 
horizontal direction.  At the ends of this flat there is a common edge radius r, on 
the rotor at the upper end and on the blade at the lower.  Under loading, actual 
contact expands a small amount onto these radii, shown schematically as 
extending to C and C' in fig. 2:  the horizontal distance between C and C' is 
denoted as the contact length Lc.  To describe variations of stresses within Lc, a 
coordinate x aligned with the contact flat and having origin O at the center of the 
flat is introduced. 
     Contact between the blade and the rotor extending over the flat in fig. 2 is 
produced by a normal pressure acting in concert with a bending stress.  For the 
first of these, the associated nominal pressure on the contact flat is given by 
 

  = , = 2 cos + sin ,p N L N F     (1) 

where N is the resultant normal force on a contact flat and   is the coefficient of 

friction between the blade and the rotor.  In eqn (1), slipping between the blade 
and the rotor has been assumed (we review some justification for this assumption 
subsequently in Section 5).  For the second of these, the associated nominal 
stress is 

 2= 2 , = 6 ,m x L M L    (2) 
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where M is the resultant moment acting and is taken to be positive when adding 
to N at x = L/2. 
     For the dovetail attachment of fig. 1, F follows from the geometry and density 
of the blade, as well as the rotational speed at which the fan operates.  For M, on 
the other hand, analysis is required because this moment is statically 
indeterminate.  Since M is a stress resultant rather than a stress, this analysis can 
be fairly readily performed with 2D or even 3D finite elements. (For some other 
blade attachments, such as fir tree attachments, F may also have to be 
determined using FEA.) 
     Our general objective here, then, is to determine the stresses produced in the 
blade and the rotor under the action of N and M that satisfy:  the field equations 
of plane-strain elasticity, matched tractions and normal displacements within the 
contact region, Amonton’s law within the contact region, stress-free conditions 
outside of the contact region, and the usual contact constraints.  These last 
require that the contact stress between the blade and the rotor be nowhere tensile, 
and that displacements of the blade and the rotor do not let the two touch outside 
of the contact region. 
     In particular, we are interested in the local stresses at or near the edge of 
contact.  There are three stress components of principal interest in this vicinity:  
the normal contact stress ,c  the companion shear contact stress ,c  and the 

normal hoop stress .h   These are shown acting in their adopted positive senses 

in the close-up in fig. 2.  Thus c  is positive when compressive, which it always 

is, while h  has the more normal sign convention of being positive when tensile 

because it can be both tensile and compressive. 
     The actual dovetail attachment in [1] is one used by General Electric Aircraft 
Engines and is made with a titanium alloy.  For this attachment, 
 
 -1= 7 52, = tan  17 12.r L   (3) 

As in [1], we consider two limiting cases for friction effects: = 0.0  and 

= 0.4.   The first of these is for the minimum coefficient for frictionless 

operation, while the second is for the maximum coefficient estimated to occur in 
dovetail attachments when they are made with the titanium alloy (see Hamdy 
and Waterhouse [3]).  Then, as in [1], corresponding loading has 
 

 -3 -3= 5.66 x 10 , 3.61 x 10 ,cp E  (4) 

for = 0.0, 0.4, respectively.  In eqn (4), Ec is the contact modulus and is 

defined by 

 
-12 21- 1-

= + ,b r
c

b r

E
E E

  
 
 

 (5) 

 
where Eb and b  are the Young’s modulus and Poisson’s ratio for the blade, Er 

and r  like moduli for the rotor. 
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3 An analytical approach for the contact stress absent 
bending effects 

Here we adapt the analytical solution of Shtaerman [2] so as to furnish estimates 
of the contact stress c  in fig. 2 produced by the nominal pressure p alone.  

Initially we do this for the frictionless case:  later, in Section 5, we discuss the 
effects of friction. 
     A cross section of the plane-strain contact configuration analyzed in 
Shtaerman [2] is shown in fig. 3(a).  Therein a rigid smooth punch is pressed by 
a normal force into an elastic half plane.  The punch has a flat base with rounded 
edges:  we take the extent of the flat to equal L and the edge radii to equal r in 
common with the contact configuration of fig. 2.  Then we take the magnitude of 
the remote forces pushing the two together to be N in order to have a nominal 
pressure of p on the contact flat.  The half plane has a Young’s modulus E and a 
Poisson’s ratio .   In fig. 3(a), we continue to employ an x coordinate arranged 
as earlier in fig. 2. 
     By superimposing displacements from the Flamant line load on an elastic half 
plane, the contact stress acting in fig. 3(a) can be shown to satisfy the integral 
equation 

    
21-

 = ,PI x u x
E


 (6) 

 
for  < 2,cx L  where Lc is now the contact extent in Shtaerman’s problem (Lc > 

L).  In eqn (6), I is the integral resulting from the superposition of line loads, and 
uP  is the displacement produced in the half plane by the punch profile.  Thus 
from, for example, Johnson [4], p. 17, 
 

    
2

2

-2
= ln ,

c

c

L

c
c-L

x -
I x d

L

  
   (7) 

 
and uP, using the approximation of Hertz [5], is given by 

 

  
 2

               for    2,                  

- 2 - 8 for 2 <   2,        
P

c

x L
u x =

x L r  L x L





 



 (8) 

 
wherein   is the depth of penetration of the punch flat. 

 
     In eqn (6), it is understood that c  must be positive to be in compliance with 

the contact constraint requiring contact stresses be compressive.  Further in eqn 
(6), Lc is to be adjusted so that the half-plane displacements outside of the 
contact region do not touch the punch and so are in compliance with the second 
contact constraint. 
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Figure 3: Shtaerman contact configurations – (a) original configuration, 
(b) modified equivalent configuration. 

     To adapt this integral equation so that it applies to the contact configuration 
of fig. 2, we first let the half plane replicate the blade and hence replace E and   
by corresponding values for the blade, Eb and b .  Next we let the punch be 
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deformable with moduli rE  and r .  Then the displacements produced in punch 

are to be subtracted off uP on the right-hand side of eqn (6).  Following 
Steuermann [6], we let these displacements also be represented by those 
attributable to the superposition of half-plane line loads.  Accordingly, with both 
of these modifications, eqn (6) becomes 
 

      
2 21- 1-

= - ,b r
P

b r

I x u x I x
E E

 
 (9) 

 

for  < 2.cx L  That I(x) on the right-hand side of eqn (9) remains the same as in 

eqn (7) is a consequence of assuming the same Green’s function for the half 
plane and the punch, together with the fact that both are acted on by the same 
contact stress.  The assumption of a common Green’s function, as well as the 
Hertz approximation used in eqn (8), are only reasonable provided the expansion 
of the contact area does not progress too far around the edge radii.  In Persson 
[7], an assessment is made of the extent that contact can extend and have to two 
simplifications remains reasonable.  Somewhat surprisingly, [7] finds this to be 
the case provided contact regions do not extend horizontally more than 40% of 
contact radii.  Because we expect lateral contact extensions to be less than this 
for the present class of contact problems, the two simplifications can be expected 
to be reasonable here.  We do, though, check that this is indeed the case 
subsequently. 
     Returning to eqn (9) and rearranging it by placing both I terms on the left-
hand side, we see that the only change to the original integral equation for 

Shtaerman’s problem, eqn (6), is that the coefficient of I,  21- ,E  is replaced 

by -1
cE  where Ec is the contact modulus of eqn (5).  It follows that the only 

change needed to be made to Shtaerman’s solution for eqn (6) so that it applies 
to a deformable punch and half plane respectively having the moduli of the rotor 
and the blade is the aforementioned exchange. 
     Finally in adapting the configuration of fig. 3(a) to that of fig. 2, we note that 
the punch profile up can equally well be interpreted as the amount the indentor 
would overlap or interpenetrate the half plane were it not for the compensating 
displacements in eqn (9).  With this interpretation, it is of no consequence 
whether up comes from interpenetration of the punch into the half plane or vice 
versa.  For that matter, the punch could interpenetrate the half plane for a portion 
of the contact region and the half plane interpenetrate the punch for the 
remainder and eqn (9) would remain unchanged.  Hence eqn (9) holds in effect 
for the configuration of fig. 3(b), and therefore the Shtaerman’s solution for eqn 
(6) applies for the contact stress in fig. 2 provided the noted moduli exchange is 
made.  Accordingly for this contact stress, from Shtaerman [2], 

 
 
 

cos cos
sin + sin - sin

= sin + ln ,
sin - sin + sin

c c
c

E L

r


  

  

     
   

  
  (10) 

 

for   2,cx L  where 
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  -1 -1= cos 2 ,  = cos , = .c cx L L L    (11) 

 
To quantify c  using eqn (10), the contact length Lc needs to be determined.  

Also from Shtaerman [2], this can be effected by solving 
 

  28 = - sincpr E L    (12) 

 
for ,  hence   and Lc.  This transcendental equation can be readily solved 
numerically. 
     By way of example, for the edge radius of eqn (3) and the frictionless loading 
of eqn (4), solving eqn (12) with the secant method yields 
 

 = 0.9787.  (13) 
 

This corresponds to cL r  equal to 8%, where  = - 2c cL L L  is the lateral 

contact extension for a single end of the contact region.  This is markedly less 
than the percentage assessed as acceptable in Persson [7].  With   of eqn (13) 
and hence   of eqn (11), c  of eqn (10) can be evaluated when normalized by 

p.  This leads to the contact stress distribution shown in fig. 4(a) for 
0 2cx L   (the distribution for < 0x  is simply a reflection because c  of eqn 

(10) is symmetric about x = 0).  This stress distribution features a sharp peak 
within the contact region extension onto the rounded edge. 
     By differentiating eqn (10) with respect to x and setting = 0,cd dx  the 

location of the maximum contact stress, + ,c  can be found.  Thus 

 + += = ,c c     where +  results from solving 

  
 
 

+

+

+

sin +
2  cot = ln ,

sin -






 
 
  

 (14) 

 
for + < .    This transcendental equation can also be readily solved 

numerically.  For the same frictionless case as for   of eqn (13), this leads to 
+ = 9.873°.   Using eqn (13), this corresponds to 

 
  +2 = 1.0066,x L  (15) 

 

where x+ is the location of +.c   That is, the maximum contact stress occurs but 

1/3 of a percent of the length of the contact flat outside of this flat.  At this 
location, eqn (10) has 
 

  + = 5.46.c p  (16) 
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Figure 4: Representative contact stress  = 0
half of the contact region; (b) edge-of contact stress. 

 
The stress distribution near this maximum is shown more clearly in the close up 
of this vicinity in fig. 4(b). 

:  (a) stress distribution over 
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     Included in fig. 4(b), starting at the edge of contact x = Lc/2, is a local 
Hertzian contact stress distribution sharing the same peak stress as .c   After 

Hertz [5] for a cylindrical roller, this stress is given by 
 

   + 2= 1- ,H c x    (17) 

 

for 1,x   where  + += -x x x x  and  + += 2 - .cx L x   The Hertzian stress 

of eqn (17) agrees with c  for 0 1x   corresponding to + 2cx x L   to 

within 1%.  This is not surprising since c  and H  share both the same stress 

values and the same stress gradients at x = x+ and 2cL .  We take advantage of 

this agreement between the two later when we assemble contributions to the 
hoop stress, .h  

4 An adjustment to the contact stress to reflect 
bending effects 

At the outset in attempting to incorporate the effects of bending, we assume that 
these are not of a sufficient magnitude to negate the compressive nature of the 
contact stresses produced by uniform pressures and thereby lead to lift off and 
separation in the contact region.  For flat punches with sharp edges Gladwell [8], 
p. 74, has that such will be the case if   of eqn (2) is limited by 
 

 < 3 2.p  (18) 

 
In lieu of any more appropriate limit, we adopt that of eqn (18) in what follows. 
     Fortunately for the dovetail attachment in [1], while nominal bending stresses 
are appreciable, they are not close to the limit imposed by eqn (18).  For this 
attachment, Sinclair and Cormier [9] reports that 
 

 = 0.36, 0.58,p  (19) 

 
for = 0.0, 0.4,  respectively.  Furthermore, for fir tree attachments, nominal 

bending stresses are relatively modest, and so also in compliance with eqn (18). 
     Unfortunately for punches with rounded edges as in fig. 3(a), the bending 
counterpart to eqn (10) would not appear to be available in the literature.  There 
are, however, analytical solutions for c  for both p and m  when the punch is 

completely flat with sharp edges.  For p, c  is given in Sadowsky [10], while for 

, m c   is given in Gladwell [8].  Accordingly we next try to take advantage of 

these flat punch solutions to arrive at an estimate of the effects of additional 
bending contributions on contact stresses for punches with small radii rounding 
their edges  1 5 .r L   

Surface Effects and Contact Mechanics XI  97

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 78, © 2013 WIT Press



     From Sadowsky [10], when a smooth flat punch of width L is pressed by a 
uniform pressure p into an elastic half plane, the contact stress f  produced is 

given by 

 
 2

2
= ,

1- 2
f

p

x L



 (20) 

 
for 2,x < L  where x continues to be as in fig. 3(a).  Now Lc = L because of the 

sharp corners, and stress singularities occur at the edges of contact.  From 
Gladwell [8], the corresponding result for the same configuration but now with 

m  acting on the punch is fm  where 

 

 
 2

4 2
=   ,

3 1- 2
fm

x

Lx L




 (21) 

 
for 2.x < L   Now it is assumed that m  acts in concert with sufficient p that 

contact is preserved over 2,x < L  and again Lc = L.  For this to be the case, 

fm  should be less that :f  this is so when eqn (18) holds.  The contact stress 

of eqn (21) shares the same stress singularity as its predecessor in eqn (20).  
Hence the quotient fm f   has a finite limit as 2.x L   If we let +

f  denote 

the peak stresses in the vicinity of = 2x L  for p alone and +
fm  the 

corresponding stress for p in concert with ,m  eqns (20) and (21) give 

 

 
+

+

2
= 1+ .

3
fm

f p

 


 (22) 

 
Thus the right-hand side of eqn (22) is the factor that peak contact stresses for 
flat punches are increased by as the result of bending contributions. 
     The contact stress of eqn (20) for the punch with sharp corners agrees with its 
counterpart of eqn (10) for the punch with corners rounded in accord with eqn 
(3) to within 3% over the central 90% of the contact region.  Outside of this 
central region, significant differences in contact stresses occur for the two 
punches.  However, because the stresses agree for the central 90%, the two 
punches must share common forces acting thereon.  Hence, since they share 
common total forces, they must also share common forces acting on their outer 
regions.  It follows, therefore, that the factor in eqn (22) reflects the increase in 
applied forces acting on the outer contact regions as a result of bending effects. 
     For the Hertzian contact of a cylinder, increasing the applied force or p has 
the peak contact stresses, +

H , increase proportional to p1/2 (see, e.g., [4], p. 427).  

This is because increases in p are mitigated to a degree by expansions in the 

98  Surface Effects and Contact Mechanics XI

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 78, © 2013 WIT Press



contact region.  Thus if we accept the factor in eqn (22) as being that for 
increasing load with bending, we would have 
 

 
1 2+

+

2
= 1+ ,

3
Hm

H p

 


 
 
 

 (23) 

 
where +

Hm  is a notional peak Hertzian contact stress with bending present. 

     While the outer edges of a punch with rounded corners do have a similar 
stress distribution to that for Hertzian contact of a cylinder, inside the common 
peak value of this stress the stresses for the two differ appreciably.  In part this is 
because the punch with rounded corners only enjoys stress relief from expanding 
contact from expansions on one side of the peak contact stress.  Accordingly we 
can expect the factor for increasing stresses due to bending for a punch with 
rounded corners to lie somewhere between that of eqn (22) for punches with 
sharp corners and that of eqn (23) for cylinders. 
     In an attempt to obtain this intervening factor, we track +

c  from eqns (10), 

(11), (12) and (14) as p varies throughout the range given in eqn (4).  We find 
that +

c  is consistently proportional to p2/3 over this range.  Consequently for 

punches with rounded corners we take 
 

 
2 3+

+

2
= 1+ ,

3
cm

c p

 


 
 
 

 (24) 

 
where +

cm  is +
c  when m  acts as well as p.  Then, for the nominal stress ratios 

of eqn (19), we have 
 + + = 1.154, 1.244,cm c   (25) 

 
for = 0.0, 0.4, respectively.  Thus with bending the maximum contact stress of 

eqn (16) is increased to 
 + = 6.30,cm p  (26) 

 
when there is no friction.  We give the corresponding increases for when friction 
acts after we discuss contact shear stress influences in the next section.  Once 

+
cm  is determined, paralleling eqn (21), for the entire contact stress distribution 

with bending present, we take 
 

 
+

+

2
= 1+ -1 ,cm

cm c
c

x

L


 


  
  
   

 (27) 

 
for 2,cx L  with c  remaining as given by eqn (10). 
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5 An analytical approach for the other edge-of-contact 
stresses 

Here we first make a determination of the shear contact stress, ,c  for the 

configuration of fig. 2.  Thereafter we combine the effects of c  with those of 

c  and F in making a determination of the hoop stress, .h    

 In Sinclair and Cormier [9], a simple cork model indicates that 
attachments like that of fig. 1 can be expected to slip as loading up commences if 
 

 tan > .   (28) 

 
Equation (28) is certainly complied with here (see eqn (3)), and this is typically 
the case for other blade attachments. 
     In [1], the FEA finds the blade in the attachment of fig. 1 not only to start to 
slip during loading up, but also to continue slipping throughout loading.  Here, 
then, we assume this to be the case.  However, this is an assumption that really 
needs to be confirmed for other attachments, something that is fairly readily done 
with FEA. (Griffin and Cushman [11] reports the same finding of slipping 
throughout loading for a firtree attachment.) 
     Under the assumption of slipping, Amonton’s law applied at the stress level 
has 

 = ,c c   (29) 

 
for 2cx L  when there is no bending present.  With bending, eqn (29) simply 

becomes  
 = ,cm cm   (30) 

 
for 2cx L , where cm  is the shear stress with m  acting as well as p.  Some 

justification for the application of Amonton’s law at the stress level rather than 
for forces is given in Johnson [4], on p. 204. 
     Unfortunately there would not appear to be a solution in the literature for c  

for punches with rounded corners when eqn (29) holds.  There is, though, a 
solution for a punch with sharp corners when eqn (29) holds given in 
Muskhelishvili [12] on p. 497.  Because of the sharp corners, this solution has 
stress singularities at the edges of contact.  Moreover, because of the different 
boundary conditions involved, these singularities do not share the same 
singularity exponent as punches with sharp corners absent friction (see eqn (20)).  
Hence it is only appropriate to compare contact stresses for punches with sharp 
corners and with and without friction well away from the edges of contact.  With 
this restriction, it is found that the contact stresses with and without friction are 
quite similar.  More precisely for   = 0.0 and 0.4 when < 4,cx L  differences 

in c  are less than 4%.  Accordingly here we choose to ignore any frictional 
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effects on contact stress distributions and take c  of eqn (10) to apply in 

eqn (29), cm  of eqn (27) in eqn (30).   

     On the other hand, with friction there are differences in applied nominal 
pressures because some of the force F is now balanced by shear stress resultants.  
These enter through eqn (1) and result in the reduced p with friction given in 
eqn (4).  For this p, eqn (12) leads to = 0.9840 and an acceptable cL r  of 

6%.  Then eqns (14), (10) and (25) give 
 

 + += 6.35, = 7.90,c cmp p   (31) 

 
for = 0.4.  

     For the hoop stress ,h there are three contributions:  nominal stresses from 

the force F of fig. 1, stresses produced by the contact stress ,c  and stresses 

generated by the shear stress .c   We treat each of these in turn. 

     Balancing vertical forces for uniform normal stresses in rectangular and 
cylindrical polar coordinates, when the two coordinate systems share a common 
origin at the intersection of the projections of the contact flats in fig. 1, directly 
yields an estimate of the nominal hoop stress, ,hn  at the edge of contact.  Thus 

 
= ,hn F w                                                     32) 

 
for x = Lc/2, where w is the width of the blade cross section at C (fig. 1).  For 
locations immediately above the edge of contact, w in eqn (32) is reduced and 
the nominal hoop stress becomes 

 
 

+ = ,
+ - 2 coshn

c

F

w L x



 (33) 

 
wherein now the plus sign indicates x slightly in excess of Lc/2.  Conversely, 
within the contact area, w is increased.  In addition, F is reduced by virtue of 
being increasingly balanced by forces on the contact flats.  Because these 
nominal stresses transpire to be an order of magnitude less than the complete 
hoop stress, we just model these reductions in F with a linear fit, and take 
 

 
 
 

- + 2
= ,

2 + - 2 cos
c

hn

c c

F L x

L w L x


  
 (34) 

 
for < 2,cx L  as the minus sign on hn  indicates. 

     Contact stresses simply produce exactly the same lateral surface stresses in 
2D elasticity.  This is a consequence of Michell’s solution in [13] for the strip 
loading of an elastic half plane that has the same equality of normal stresses in 
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the surface.  Hence, absent friction, the hoop stress acting in fig. 2 for the 
dovetail attachment of fig. 1 is given by 
 

 
+

-

              for > 2,         
=

 - + for < 2,         
hn c

h

cm hn c

x L

x L




 




 (35) 

 
and it is understood that x only slightly exceeds Lc/2 for the upper result. 
     When the shear stresses attending friction act in the positive sense shown in 
fig. 2, they generate tensile hoop stresses at C, compressive at C'.  These stresses 
can be obtained by superimposing stresses from the Boussinesq horizontal line 
load on an elastic half plane.  Thus from, for example, Johnson [4], p. 19, and 
eqn (30), the additional hoop stress, ,h  generated by frictional shear stresses 

is given by 

 
   2

- 2

2
=  d ,

-

c

c

L
cm

h

L x

  
 

   (36) 

 
where  cm   is cm  of eqn (27) with   replacing .x  

     With a view to clarifying the key contribution stemming from the integral in 
eqn (36), we exchange cm  for - ,Hm cm Hm+    where Hm  is H  of eqn (17) 

with +
c  replaced by + .cm   Then the integral involving Hm  can be evaluated 

analytically:  see Poritsky [14].  Denoting the hoop stress from this integral by 
,H   we have 

 

 
 2

+ - -1 for > 1,
= 2   

for < 1,                  
H cm

x x x

xx
 






 (37) 

 
where x remains as in eqn (17).  Hence in conjunction with eqn (35) we have, 
for the edge-of-contact hoop stress distribution with friction present, 
 

 
  + 2 +

+ -

2 - -1 + + for 1 2,
=

2 + - +               for 1,     

cm h hn

h

cm h cm hn

x x x

x x





  


   

  





 (38) 

 
where 

      
 2

+ +

 - 2

2
= - - + ,

-

c

c

L

h cm Hm

L

d
H x x

x
      
 

    (39) 

 
and H is the Heaviside unit step function.  What eqn (38) then shows is that h  

has an infinite positive gradient as 1, > 1,x x  from the first term in the upper 
line, as well as an infinite negative gradient as 1, < 1x x  corresponding to 
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2, < 2,c cx L x L  from cm  of eqn (10) which contains 

  2
sin = 1- 2 .cx L    It follows that the maximum value of the hoop stress 

occurs right at the edge of contact and is given by 
 

  + += 2 + = 2 + ,h cm h c hnx L     (40) 

 
where hn  is as in eqn (32).  For the friction case of eqn (4), we compute these 

various contributions to +
h  (using a midordinate rule in conjunction with 

singularity programming to calculate the Cauchy principal value of the integral 
for hn  in eqn (39)).  Normalized by p, the following results are given for the 

terms in eqn (40) in the order which they occur there: 
 

 + = 6.32 +1.36 + 0.82 = 8.50.h p  (41) 

 
As expected from the nature of the expressions in eqn (38), the first term in 
eqn (41) is the major contributor to the peak hoop stress. 

6 Validation of the analytical approach 

The preceding analytical approach makes a number of simplifying assumptions.  
Accordingly we seek to evaluate the validity of this approach by comparing with 
an accurate finite element determination of corresponding stresses.  To this end 
we choose the FEA of Sinclair et al. [1] because there, by refining meshes 
sufficiently, converged contact stresses for the dovetail attachment of fig. 1 are 
reported. 
     The FEA in [1] employs four-node quadrilateral elements in concert with 
point-to-surface contact elements (PLANE42 and CONTAC48, ANSYS [15]).  
For these elements, once contact extents have been determined, errors in stresses, 

,e  behave like 

  =   as  0,e O h h   (42) 

 
where h is the element size in the vicinity of where   is being determined. 
     The initial mesh (m = 1) used in [1] features significant mesh gradation away 
from the contact region, but nearly constant element sizes within the vicinity of 
the contact region with h equaling about 16% of the edge radius r.  This mesh is 
refined by halving element extents to produce two further meshes (m = 2, 3).  
Thereafter, to reduce computational effort, the submodelling technique of 
Cormier et al. [16] is employed in the neighborhood of C in fig. 1 wherein the 
maximum contact stresses occur.  This results in three additional meshes  
(m = 4-6) with element sizes continuing to be halved. 
     For the first three meshes, contact extents vary, as do the locations of peak 
contact stresses.  Consequently contact stresses are not expected to have 
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converged on this first sequence of meshes, and indeed, as is apparent in what 
follows, this proves to be the case.  Nonetheless, the finest of these three meshes 
furnishes the best estimates available of the relative contributions of bending to 
peak contact stresses because such estimates are not available from the submodel 
meshes since they focus on the contact stress at C alone.  For this mesh (m = 3) 
then, averaging peak contact stresses at C and C' and dividing into the peak at C 
by itself furnishes 

 + + = 1.2,1.3,cm c   (43) 

 
for = 0.0, 0.4, respectively.  Despite underlying contact stresses for the ratios 

in eqn (43) not being converged, the ratios are quite comparable to their 
counterparts with the analytical approach in eqn (25) (within 5%). 
     On the three submodel meshes, contact extents in [1] are adjusted by 
successively smaller amounts with mesh refinement and appear to have 
converged with contact extensions being about 1% of the extent of the contact 
flat corresponding to =  0.98.  This is also quite comparable to results for the 
analytical approach (e.g., eqn (13)).  Further, the locations of the peak contact 
stresses remain fixed on all three submodel meshes and coincident with that for 
m = 3 (see figs 4(b) and 5(a), [1]).  Hence on this entire sequence of four meshes 
a reasonable determination of the extent to which the FEA has converged is 
possible.  Table 1, therefore, includes the peak contact stresses for m = 3-6 from 
[1] (specifically, from Table 2 thereof on renormalizing). 

Table 1:  Finite element results for edge-of-contact stresses. 

Mesh, 
m 

Mesh 
size, 
h/r 

+
cm p  

= 0.0  

+
cm p  

= 0.4  

+
h p  

= 0.4  

 

3 

 

1/25 

 

5.53 

 

6.26 

 

3.99 

4 1/50 5.95 6.96 4.95 

5 1/100 6.16 7.23 5.83 

6 1/200 6.26 7.36 6.50 

“∞” “0” 6.36 7.49 (8.64) 

 
Corresponding 

analytical value: 
 

  
 

6.30 

 
 

7.90 

 
 

8.50 
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     For the peak contact stresses in Table 1 for = 0.0, stress increments 

successively halve with mesh refinement, or nearly so.  Such numerical results 
are consistent with a linearly converging analysis.  Thus Richardson 
extrapolation [17] for linear convergence can be applied and merely adds the last 
stress increment to the last stress (m = 6) to get an extrapolated value.  These 
values loosely correspond to m → ∞ or h → 0, and are included in Table 1.  The 
same situation obtains for meshes m = 4, 5, 6 for = 0.4, and extrapolated 

values are likewise included. 
     With linear convergence, discretization errors in stresses do behave as in 
eqn (42).  Hence percentage errors for mesh m results, ,m  can be estimated by 

 

  =  x 100 % ,m
m

m





  (44) 

where -1= - , m m m m    being the FEA determination of the stress of concern 

on mesh m.  Applying eqn (44) to the results in Table 1 for +
cm  gives 

6 = 1.6%, 1.8%,  for = 0.0, 0.4, respectively.  All told, therefore, it would 

seem reasonable to regard the FEA results of [1] for +
cm  as being of good 

accuracy. 
     For comparison, corresponding analytical results for +

cm  from eqns (16) and 

(31) are also included in Table 1.  The analytical result for +
cm  for = 0.0 

agrees well with the extrapolated FEA result (within 1%).  The analytical result 
for = 0.4 agrees satisfactorily with the extrapolated FEA result (within 6%).  

The greater disagreement for the latter case is perhaps to be expected because the 
presence of friction increases the complexity of the contact configuration and 
consequently results in additional simplifications in the analytical approach (see 
Section 5).  It also challenges the FEA more:  despite the FEA indicating that 
slip occurs throughout the contact region, peak shear contact stresses diverge 
from satisfying Amonton’s law by 3.3% in [1], so that perhaps errors in +

cm  for 

= 0.4 are somewhat larger than the 1.8% estimate made using eqn (44).  In all, 

therefore, at least a satisfactory validation of the analytical approach. 
     While not part of the validation of the analytical approach, FEA hoop stresses 
are in addition included in Table 1 to illustrate the challenges of determining this 
stress right at the edge of contact with finite elements.  In contrast to contact 
stresses, peak hoop stress locations are a never coincident throughout the mesh 
sequence (see fig. 5(b), [1]), and only for m = 6 occur at the correct location (x = 
Lc).  Consequently stress increments vary erratically rather than systematically 
and are not in agreement with increments for linear convergence.  Because these 
increments are decreasing in magnitude, it is possible to apply generalized 
Richardson extrapolation as in Roache [18], on p. 111.  This leads to the value 
included in parentheses in Table 1:  parentheses are used because experience has 
shown that such large changes with extrapolation can be unreliable.  Rather, 
instead, we use the increments to estimate the error with a procedure that 

Surface Effects and Contact Mechanics XI  105

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 78, © 2013 WIT Press



recognizes erratic convergence.  In accord with Roache [18], p. 155, this 
procedure has, for mesh refinement halving element extents, 
 

 
   =  x 100 % ,
2 -1m

m
m c

m





  (45) 

 
where  -1= ln ln 2m m mc     is an estimate of the effective convergence 

rate.  Applying eqn (45) to the results in Table 1 for +
h  gives 6 = 33%.   

Alternatively, if one were to take the analytical value from eqn (41) given in 
Table 1 as being accurate, 6 = 24%.   Either way, the error level in +

h  is not 

satisfactory. 
     There are reasons why the FEA determination of +

cm  can be accurate but that 

for +
h  not be.  For + ,cm  while it is near an infinite stress gradient at x = Lc, at x 

= x+ the actual stress gradient in cm  is zero.  In contrast, the stress gradients for 

h  at its peak location, x = Lc, are infinitely positive then infinitely negative as 

Lc is approached from above and below (see Section 5).  These severe gradients 
seriously impair the determination of +

h  with finite elements.  For peak hoop 

stresses, therefore, the analytical approach may offer a significantly more 
effective means of determining such stresses than FEA. 

7 Concluding remarks 

Drawing on the contact stress solution in Shtaerman [2], an analytical approach 
is developed for blade attachments in gas turbines.  The approach enables the 
FEA of such attachments to determine just stress resultants, quantities that 
converge more rapidly than stresses themselves.  Given the appropriate 
resultants, the approach then furnishes key edge-of-contact stresses. 
     The analytical approach employs a number of simplifying assumptions.  To 
check the validity of these assumptions, peak contact stresses are compared with 
an FEA that has converged corresponding stresses.  Agreement between the two 
is quite satisfactory (differences < 6%).   
     Results for the edge-of-contact stresses show that significant stress 
concentrations occur near the edge of contact.  The most potentially damaging of 
these stress raisers is a tensile hoop stress that occurs right at the edge of contact.  
This stress is likely to be the most damaging because, as the analytical approach 
explicitly shows, it has severe stress gradients when approached from either 
inside or outside of contact.  As a result, small changes in operating rpm and 
nominal stresses produce relatively large changes in this hoop stress as the 
contact region shifts. 
     Focusing, therefore, on this key hoop stress at the edge of contact, there are 
several options for reducing its severity.  Shot peening can be used to reduce its 
magnitude by adding a compressive contribution.  Choosing materials that are 
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otherwise equivalent in terms of strengths in the turbine environment but have a 
lower coefficient of friction lower this stress largely proportionally.  And 
precision crowning as in Sinclair and Cormier [19] offers a potential means of 
completely removing peak hoop stresses at the edge of contact. 
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