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Abstract 

A formulation based on the principle of virtual work for the determination of 
equilibrium crystal shapes is presented. The surface tension at the interface 
between material phases is non-constant depending on the interface orientation. 
The non-constancy of the surface tension means that for interface equilibrium 
certain distributed torque must act on the interface. When the distributed torque 
has jumps in its value, edges can emerge on the interface surface. The 
corresponding jump conditions at the edges are derived. The presentation is 
mainly limited to two dimensions but the formulation can be extended rather 
straightforwardly also to three dimensions. A discrete formulation employing a 
line segment model is applied to a demonstration example having analytical 
solution. Further, the demonstration example with edges shows that the jump 
conditions are satisfied. 
Keywords: crystal shape, surface tension, contact, virtual work. 

1 Introduction 

Classical methods to determine equilibrium shapes of crystals are the Wulff 
construction and the Landau-Andreev formulation (Nozieres [1]). The Wulff 
construction applies for closed shapes and does not take into account the effect 
of gravity. The Landau-Andreev formulation gives the interface with Cartesian 
coordinates in the form z(x, y) and does not work with an arbitrary shaped 
substrate. Further, difficulties appear if the solution is double valued in z. 
     The present article describes an approach on equilibrium crystal shape 
determination based on the principle of virtual work. The obtained results are in 
accordance with reference [1] but the restrictions mentioned above do not 
emerge. The presentation is mainly limited to two dimensions but the 

distributed torque 
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formulation can be extended rather straightforwardly also to three dimensions. 
The problem statement is given in Chapter 2, the theory in Chapter 3 and the 
corresponding discrete approach in Chapter 4. The jump conditions are derived 
in Chapter 5 in the three-dimensional case and the two-dimensional case is 
obtained as a special case. In Chapter 6 a numerical result is presented. 

2 Problem statement 

Let us consider Figure 1. The basic setting consists of a crystal (C), surrounded 
by liquid (L) and resting in equilibrium on a solid surface wall (W). The task is 
to determine the position of the interface surface S between the crystal and the 

liquid. The shape of the wall surface Ŝ  is considered as given.  
 

 

Figure 1: Some notations. 

     The study here is restricted to two dimensions and Figure 1 thus represents a 
cross-sectional cylindrical case. The interfacial energy density   depends on the 

orientation of the interface surface or here in this two-dimensional case on the 
direction angle  :     . The interfacial energy density between the wall 

and the crystal phase CW  and the interfacial energy density between the wall 

and the liquid phase LW  depend in principle on a given way on the position on 

Ŝ . The interface touches the wall at points a and b, with contact angles a  and 

b  which are all initially unknowns of the problem. The cross-sectional area CA  

of the crystal is assumed to be given in the problem statement. Correspondingly, 
the pressure Cp  in the crystal is an unknown constant. The known pressure in 

the liquid is taken according to the hydrostatic pressure distribution 

L 0 Lp p gz  , where L  is the constant density of the liquid, g the 

acceleration of gravity, z the upwards measured coordinate and 0p  a given 

pressure associated with the level z = 0. When the hydrostatic pressure 
distribution is applied on S, z must naturally be measured on the surface. The 
position vector r on S is expressed in the form  sr r  where the s is arc 

length. The position vector r̂  on Ŝ  is expressed (sometimes in a piecewise 
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manner) in the form  ˆ ˆ ur r  where u is a suitable curve parameter. The unit 

normal vectors n  and n̂  on S and Ŝ  are directed into the liquid and into the 

crystal and the unit tangent vectors t  and t̂ into the increasing directions of s and 
u, respectively. 

3 Virtual work 

The principle of virtual work is a well-known formulation with wide application 
areas in mechanics, e.g. Lanczos [2]. We write the principle down for the 
interface problem under study and then show finally that the relevant equations 
follow from it. The virtual work equation is 

 int ext bound' ' ' ' 0W W W W       , (1) 

where int'W  is the virtual work of the internal forces, ext'W  is the virtual 

work of the external forces and bound'W  is the virtual work of from the 
boundary terms. The principle of virtual work states that (1) is valid for any 
virtual movement of the interface. The principle of virtual work is not a 
variational principle in the sense that a stationarity condition of a functional is 
not involved. The prime on   is used to emphasize thus that no variations of 

some quantities W are involved. Usually in the principle of virtual work the 
variation of the position vector of material particles are involved and the 
variation is called virtual displacement. Here the change in the position of the 
interface will be called virtual movement to indicate that the movement is not 

necessarily associated with a material particle. The term bound'W  could be 
included in the virtual work of the external forces but because of its rather 
special form it has been included as a separate term. Finally, although the 
interface problem is according to Nozieres [1] a “chemical” problem, we mostly 
borrow terminology from mechanics. 

 

Figure 2: Position vector r and virtual movement  r. 

     Let us consider Figure 2. Let the position vector to a generic point on the 
interface curve S be denoted  sr  and let the corresponding point on a varied 

comparison curve S  be given by    s sr r , where r  is called here virtual 

movement. The expression for the virtual work of internal forces is 
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 int d
' d

ds
W s

s

   
r

t  . (2) 

The integral is over the interface curve from a to b. 
     The external “forces” acting on the interface consist of the pressure difference 
 C Lp p n  and of a torque mm j , where j is the unit vector in the -y axis 

direction. The physical unit of m is the same as of  : N/m . The virtual work of 

external forces is given by 

  ext
C L

d
d d

ds s
W p p s m s

s

    
r

n r n  . (3) 

     We consider next the constraint of the given cross-section area of the crystal. 
This can be expressed as 

 C
1 1

ˆ ˆd d
2 2s u

A s h u A   r n r n  . (4) 

     The second integral is over the domain of u corresponding to points a and b. 

The scale factor    2 2
d / d d / dh x u z u  . Variation of (4) gives after some 

manipulation the equation d 0
s

s  n r . If this varied constraint is included in 

the virtual work equation by using the Lagrange multiplier method, the left-hand 
side of (1) obtains the contribution 

 d
s

s  n r , (5) 

where   is the Lagrange multiplier. However, then (3) must be written 
originally without the term associated with Cp . Comparison of (3) and (5) 

shows that we have the interpretation Cp   and we can continue using just the 

symbol Cp  and the expression (3). 

     The rather non-transparent virtual work expression from the boundary points 
is found to be ( 0as  ) 

  bound
LW CW

ˆ

sin sin
a as s s s

W
    
  

   
n r n r 

 

 

  LW CW
ˆ

sin sin
b bs s s s

   
  

  
n r n r 

, (6) 

where from the geometry at a and b  ˆ sin cos ,
a as s s s

  
 n t n  

 ˆ sin cos .
b bs s s s

  
  n t n  In (6), it is not necessary that the virtual 

movement r  is such that the end points remain on the wall surface. However, if 
r  selected so, the first terms on the right-hand sides of (6) are seen to vanish. 
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When a or b is not fixed in position in advance, we call the boundary as free. If 
the physics demand point a or b fixed in position, the corresponding is r  set to 
zero and no contribution to the virtual work equation appears. 
     Collecting all the terms given above, the virtual work equation (1) obtains the 
form 

  C L
d d

d d d
d ds s s

s p p s m s
s s

       
r r

t n r n  
 

 

  LW CW
ˆ

sin sin
a as s s s

   
  

  
n r n r 

 

 

  LW CW
ˆ

0
sin sin

b bs s s s

   
  

   
n r n r 

. (7) 

Borrowing the terminology used especially in the finite element literature, e.g. 
Belytschko et al. [3], (7) is a weak formulation of the present problem. Based on 
the arbitrariness of r , we can deduce the corresponding so-called strong forms 
from it. The necessary manipulations are based on integration by parts yielding 
finally the field equations 

 C L a b
d

,
d

m
p p s s s

R s


      (8) 

and 

 a b
d

0,
d

m
s s s

s R


    . (9) 

 
The derivation of equations (8) and (9) from the weak form (7) is treated in more 
detail in [4]. Further, the following boundary conditions are arrived at 

 LW CWcos sin , am s s        , (10) 

 LW CWcos sin , bm s s        . (11) 

From (9) follows 

 
d

d
m




  . (12) 

This important result shows that for equilibrium in the tangential direction, the 
torque cannot be arbitrary but should be evaluated according to (12). 
     Using relation (12) in equation (8) gives now 

 
2 2

C L
d / d

p p
R

  
   (13) 

as the final equilibrium equation in the normal direction. The term 2 2d / d    

is called the surface stiffness. 
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4 Discrete formulation 

The discrete formulation is based on a kind of finite element method. The 
interface is discretized by two-noded line elements or segments. Figure 3 shows 
the notations for a generic line segment. The position vector along the segment is 
given by 

      1 2 1 2 1 21 1 1x x z z                   r r r i k , (14) 

where instead of the local arc length s the dimensionless coordinate /s L   is 

used. L is the length of the segment. 

 

Figure 3: A generic line segment. 

The generalized coordinates used are (normally) the nodal Cartesian coordinates 

1x , 1z , 2x , 2z . From (14) by variation, the virtual movement along the segment 

is 
      1 2 1 2 1 21 1 1 .x x z z                       r r r i k  (15) 

The virtual work contribution from the segment obtains finally the form 

 1 1 2 1 2 2 2 2W X x Z z X x Z z         , (16) 

where 1X , 1Z , 2X , 2Z  are generalized forces. The generalized forces consist 

similarly as the virtual work from terms corresponding to the internal and the 
external forces and to the free boundary. The derivation of the terms is discussed 
in more detail in [4].  
     The contribution to the cross-sectional area from the segment is simply (using 
expression (4)) 

  2 1 1 2
1

2
A x z x z   . (17) 

     The geometry of the discrete interface model is fixed by a list consisting of 
the nodal Cartesian coordinates, say X, and of the global node numbers of the 
segments in the model. The task is to determine that X for which the main 
system equations (equilibrium equations) are satisfied. An additional unknown is 
the pressure Cp  in the crystal. The corresponding additional system equation is 

the area constraint CA A . It is to be noted that Cp  appears in the equilibrium 
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equations but not in the constraint equation. As the interface determination 
problem is strongly non-linear, the solution must be found iteratively. 
     The generalized coordinates (which might be called also generalized 
movements) are denoted here iq . They are defined in principle anew for the each 

current system configuration. Normally, we will employ two movements kx  

and kz  for a generic node k inside the mesh. However, at a free boundary 

node, only one movement in the solid surface tangent direction is used. 
     The virtual work for the interface model (with respect to a current 
configuration) obtains the form 

 
dof

1

'
N

i i
i

W Q q 


  , (18) 

where iQ  is the i:th generalized force corresponding to the i:th movement iq  

and dofN  the total number of movements. The generalized forces must vanish 

and the area constraint must be satisfied. Thus, the system equations are 

 dof

C

0, 1, 2, ,

.
iQ i N

A A

 




 (19) 

More specifically, corresponding to a generic node k inside the mesh where the 
movements kx  and kz  are used, the corresponding two discrete equilibrium 

equations in (19) are 

 
0 ,

0.
k

k

X

Z




 (20) 

For a given X  and Cp  – initially guessed or updated – the system equations 

(19) are naturally usually not satisfied. Let the corresponding values of the left-
hand sides in (19) iQ  and A . The movements jq  and the pressure change Cp  

needed towards a hopefully better solution are determined using an application 
of the Newton-Raphson method, which is presented in [4]. 

5 Jump conditions 

When the distributed torque has jumps in its value, edges can emerge on the 
interface surface. For future use, the derivation of the jump conditions at the 
edges is performed in the three-dimensional case. The two-dimensional case is 
obtained as a special case. 

 

Figure 4: Interface surface C and some notations. 
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     The position vector r to interface surface C is represented as 1 2 ( , )u ur r , 

where 1u  and 2u  are the surface parameters. Of course, this relationship is 
originally unknown. Here and later we will follow rather closely the notations of 
reference [5] and also employ some relevant formulas presented there. 
     Again, the surface tension   is not constant but depends in a prescribed way 

on the orientation of the interface and consequently on position. The equilibrium 
of the interface is then not possible without a distributed torque loading m. 
     The three-dimensional counterpart to virtual work equation (7) can be written 
as 

    1 2
1 2

1 22 1,

δ δ
δ d d

u u
W u u

u u
           

r r
n g n g 

 
 

 1 2
1 2

1 22 1,

δ δ
d d

u u
m m u u

u u

    
  

r r
n n   

  1 2
1 2

C L,
δ d d 0

u u
g p p u u bt    n r . (21) 

Above, the first integral is the virtual work of the internal forces, the second 

integral is the external virtual work from the torque (moment per unit interface 

surface) 1 2
1 2m m m g g , and the third integral is the external virtual work 

from the pressure difference C Lp p . The term bt refers to the virtual work 

from the free boundary and is not given here in detail as it does not affect the 

jump conditions. Further explanations concerning equation (21) are as follows. 

The integrals are over the appropriate domain in the 1 2 -u u plane. δr is the virtual 

movement from surface C to a varied surface C . n is the unit normal vector to 

C. 1g  and 2g  are the covariant and 1g  and 2g  the contravariant basis vectors 

and g is the discriminant of the covariant metric tensor. Further, s is the unit 

vector tangent to the boundary line and 1 2
1 2v v v g g  the unit vector in the 

tangent plane and normal to the boundary. 
     Based on the arbitrariness of the virtual movement δr , we can deduce 
similarly as shown in Chapter 3 in the two-dimensional case the strong forms 
from the weak formulation (21) of the present problem. For obtaining the strong 

forms, the derivatives of δr  with respect to 1u  and 2u  must be removed by 
integration by parts. Some development of the formula (1.13.61) in [6] gives the 
appropriate integration by parts formula producing the line integral contribution 

    2 1 1 2 δ d
s

L v v s
g


       n g n g r

 
 2 1 1 2

1
δ d

s
v m v m s

g
    n r .  (22) 

We will not derive here all the strong forms following from (21). For our 
purpose it is enough to consider just (22) further. First, 
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 2 1
1 2,g g    n g g n g g , (23) 

so 

      2 1
2 1 1 2 2 1v v g v v g     n g n g g g v . (24) 

Second, 

    1 2 1 2
1 2 1 2 1 2 2 1

1
v v v v v v

g
          s n v n g g n g n g g g . (25) 

and thus 

      1 2
1 2 1 2 2 1 1 2 2 1

1 1
m m v v m v m v

g g
     m s g g g g  . (26) 

When (24) and (26) are taken into account in (22), we arrive at the formula 

   δ d
s

L s     v m s n r  . (27) 

The expression inside the brackets is physically rather transparent. Especially, 
the term m s  is the scalar component of the torque vector m along the boundary 
tangent direction. 
     The above result was obtained assuming that the surface C is smooth. Let us 
consider the case where there is an edge along a line c shown in Figure 5. 
 

 

Figure 5: An edge. 

     Now the integration by parts manipulation must be performed in a piecewise 
manner. The values of the quantities on both sides of c are indicated by minus 

and plus superscripts as shown in the figure. (Here   s s . Vectors n  and 
n  are not drawn to keep the figure simple enough.) Two contributions like (27) 

appear along c and we obtain together the term 

     δ d
c

s                v m s n v m s n r   . (28) 

As the virtual movement is arbitrary, the jump conditions on c become 

                  v m s n v m s n 0  . (29) 
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Jump conditions in two-dimensional case can be obtained from (29) as follows. 

Figure 6 shows a cross-section of the interface at an angular point. Now t  and 
t  are the tangent unit vectors. The torque is here mm j . Let  s j  and thus 
  s j . Then 

  ,m m m m            m s j j m s j j    . (30) 

 

Figure 6: An angular point in two-dimensional case. 

Further, comparing Figures 5 and 6,  v t  and   v t . The jump 
conditions (29) obtain thus here finally the form 

 m m            t n t n 0 . (31) 

6 Numerical example 

A simple two-dimensional example case having analytical solution is presented 
to give an idea about the working of the discrete method. The wall is a corner 
consisting of the planes z = 0 and x = 0. The interface surface energy expression 
is from Junes [7]: 

 0
1 1

sin cos sin cos
2 4 2 4

      
             

    
, (32) 

where 0  is a reference value. Constant values LW = CW were used giving the 

contact angles / 2  . The corresponding Wulff construction solution is 

shown in Figure 7 (a). The interface consists just of straight lines. Now the 

discontinuities in the torque appear at 0  , / 4   , / 2   , 

3 / 4   ,    . 

     Let us consider the upper angular point in Figure 7 (a). We have  n k , 
 t i , / 2 / 2  n i k , / 2 / 2  t i k  and   01 1/ 2    , 

0m      01/ 2 2    , 0 / 2m   . When these values are substituted 

in (31), the equation is found to be satisfied. The present problem has been 
solved also by the discrete approach described in [4]. The results of the 
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calculations are shown in Figure 7 (b). The number of segments has been 14. 
The initial guess for the interface is smooth (dashed line). It is interesting to note 
that the solution process so to say automatically finds the angular solution (solid 
line) in a rather satisfactory way. Further example cases are given in [4]. 
 

 

Figure 7: (a) Wulff construction; (b) Discrete solution. 

7 Conclusions 

The results obtained in this study and in [4] show that the presented formulation 
based on the principle of virtual work is correct. The initial geometries to start 
the calculations can be rather arbitrary and far from the final ones, and the 
discrete solutions have still been found in general to converge. Further, the 
discrete solution approach has been able to mimic the possible angular behaviour 
of the solution. The jump conditions in surface tension problems with distributed 
torque have been derived in the three-dimensional case. As a special case, the 
jump conditions are then obtained in the two-dimensional case. The example 
case in two dimensions demonstrates that the derived jump conditions are 
satisfied at the angular points. 
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