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Abstract 

A combination of finite element modelling with gradient-based numerical 
optimization is used to determine the material parameters of a mechanical 
constitutive law from indentation testing by minimizing a cost function, 
quantifying the difference between load versus displacement-into-surface curves 
obtained from experiments and from finite element modelling. The required 
gradients of the cost function are calculated through a sensitivity analysis based 
on the direct differentiation method. Approximate correlation or cosine matrices 
will be calculated for assessing parameter correlation and used for designing load 
histories, which improve the parameter correlation in indentation testing. Finally, 
experimental indentation curves from metallic materials will be analyzed using 
the inverse method. The impact on material parameter identification of indenter 
tip size and of the incorporation of residual imprint data, obtained by white light 
interferometry, into the objective function will be monitored. 
Keywords: indentation testing, finite element modelling, numerical optimization. 

1 Introduction 

Depth-sensing indentation and nanoindentation testing is being used for 
determining some material properties, such as Young’s modulus and hardness 
following methods developed by Oliver and Pharr [1]. A rigid indenter is pushed 
into a specimen and the displacement-into-surface is recorded as a function of 
the applied load. Computational inverse methods have been developed for 
material parameter identification, either based on neural networks (Huber and 
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Tsakmakis [2]) multiple response surface analysis (Hamasaki et al. [3]) or on 
numerical optimization (Constantinescu and Tardieu [4], Bolzon et al. [5], 
Rauchs [6]), which offer the possibility to determine material parameters of 
mechanical constitutive laws in addition to those found through standard 
experimental procedures. The inverse methods may be used in combination with 
the finite element method for determining material parameters, both for the case 
of simple tests, such as uniaxial tension (Mahnken and Stein [7]), and especially 
in the case of highly inhomogeneous, multiaxial stress fields, such as the 
indentation test or in the case of local damaging of the specimen. In 
optimization-based methods, the material parameters are determined by 
minimizing an objective function, quantifying the difference between load versus 
displacement-into-surface curves obtained from experiments and from finite 
element modelling. Most often, gradient-based optimization algorithms are used 
because they offer the potential for fast parameter identification, and the required 
gradients of the cost function can easily be calculated in a fast and reliable way 
through a sensitivity analysis based on either direct differentiation or  
adjoint-state methods. Some material parameters are difficult to determine, such 
as viscosity parameters (Constantinescu and Tardieu [4], Klötzer et al. [8]), or 
the separation of isotropic and kinematic hardening (Huber and Tsakmakis [2]) 
and the reliability of the results is poor because of strong parameter correlation. 
This stems from the fact that in indentation tests, some physical phenomena 
inherent to the constitutive laws may not affect the experimental curves in a 
significant or distinguishable way, as shown in Chen et al. [9]. In addition to 
this, the experimental data resulting from indentation testing, i.e. load and 
displacement-into-surface, are integrals of stress and strain, respectively, 
whereas the material constitutive law is based directly on stress and strain. In the 
present paper, the spherical indentation test is modelled by an axisymmetric 
finite element model for obtaining the objective function and the sensitivities 
with respect to the material parameters necessary for the material parameter 
identification algorithm. After presenting the material constitutive law, the 
computational framework and the sensitivity analysis based on direct 
differentiation, the investigation of material parameters of the aluminium alloy 
Dural will be presented, and the influence of experimental residual imprint 
measurements on parameter identification assessed. 

2 Elasto-viscoplastic law 

In the following, tensors, matrices and vectors are characterized by boldface 
letters, unless index notation is required for a clearer representation. A  
neo-Hookean hyperelastic law is used, which relates the Kirchhoff stress S to the 
left Cauchy-Green elastic deformation tensor Be, defined through the elastic 
deformation gradient Fe, obtained from the standard multiplicative elastic-plastic 
decomposition of the deformation tensor F. The hyperelastic constitutive law, 
with the elastic Lamé constants and , the determinant of the elastic 
deformation gradient J and the second order identity tensor I reads 
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  IΙBS Je ln  .                            (1) 

     Plastic hardening with an associative flow rule is considered, including non-
linear isotropic and nonlinear kinematic hardening. The evolution of the yield 
limit Ky is described through a non-linear isotropic hardening law, with 

   sRYK y  exp1
3

2
,          (2) 

where s is the plastic arc length, Y is the initial uniaxial yield stress, and R and 
are the nonlinear isotropic hardening parameters. The back-stress, , and the 
plastic strain, p, are related through the kinematic hardening evolution using the 
Armstrong-Frederick law with the non-linear kinematic hardening parameters 
Hkin and b. 

αεα sbbH pkin  
3

2
.                  (3) 

     In order to include viscoplasticity into the constitutive equations in a simple 
and efficient manner, the yield condition differs from the consistency condition. 
The yield condition f reads, with the deviatoric projection operator P, 

 








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,:

f

f
Kf yαSP ,             (4) 

For viscoplasticity, the consistency condition reads 

   m
y sKf

1

3

2
:  αSP ,                   (5) 

where is the viscosity and m is the viscosity exponent. 

3 Stress update equations 

In the following, the state at the beginning of the time increment is characterized 
by the prefix 0, the state at the end of the increment by 1. The time integration of 
the constitutive equation is performed through an operator split: an elastic 
predictor step followed by an inelastic corrector step. In the elastic predictor step, 
no inelastic deformation takes place and the deformation gradient F is modified 
by F, whereas in the inelastic corrector step the deformation gradient F remains 
unchanged and inelastic deformation takes place. The elastic predictor step gives 
the trial state, labelled by the prefix Tr, 

T
ee

Tr FBFB  0 ,              (6) 

with 
101  FFF .            (7) 
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     The predictor of the back-stress of the elasto-viscoplastic constitutive law is 
calculated similarly to eqn (6). The inelastic corrector leads to the stress and 
internal variable update equations used in the direct deformation finite element 
code. In order to simplify the notations, we introduce a generalized directional 
derivative, similar to a Gateaux-differential, which designates derivatives with 
respect to time or with respect to a material parameter . Such a differential of a 
tensor X is written as 

 X                                                              (8) 

     The linearization of the Kirchhoff stress at the end of the increment gives a 
relationship in the following form 

 













x

u
DSS

1
11 :mat ,           (9) 

where Dmat is the consistent constitutive tensor, derived from the stress update 
equations. The first term on the right hand side regroups the explicit sensitivities 
of the material parameter and the sensitivities of the stress at the beginning of the 
increment. It is important to notice that this term is only active in the sensitivity 
analysis and vanishes for the linearization used in the Newton-Raphson iteration, 
which is a linearization with respect to the displacement increment, u, upon 
which the state variables at the increment start do not depend. 

4 Sensitivity analysis 

Sensitivity analysis is performed using the direct differentiation method, which is 
presented in Rauchs [6], for example, because of its conceptual simplicity. 
Starting from the basic equilibrium equation of non-linear finite element analysis 
and using the element shape function NA, the current position vector 1x and 
integrating over the body in the current configuration, the discretized form is 
obtained: 

0,,1
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d
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ffσ
x

,            (10) 

where fA,ext is the external nodal load and fA,con is the contact nodal load at nodes 
on the contact boundary. The derivative of eqn (10) with respect to a material 
parameter yields 

  0,1
1












 




 conA

A

d
N

fσ
x

.             (11) 

     In case of conservative external nodal loads, the sensitivity of the second term 
in eqn (10) vanishes. Replacing the Cauchy stress, , by the Kirchhoff stress, S, 
using the sensitivity of the Kirchhoff stress specific to the constitutive law, 
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eqn (9), and performing some lengthy mathematical developments, which can be 
found in Rauchs [6], for example, eqn (11) becomes 

     0
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where the first integral contains terms depending on the sensitivity of the 
displacement increment and the second integral contains only terms known at the 
beginning of the increment. With the sensitivity of the displacement gradient 
interpolated through 
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the two integrals can be further condensed into 

   0, 
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and 
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in which repeated capital indices stand for the summation over all the nodes 
coupled to node A through solid continuum elements. KAB,con is the contact 
stiffness matrix. In the frictionless case considered here, the contact force 
sensitivity depends on geometric quantities only. It should be noted that the 
differential of 0xis known from the previous increment or the boundary 
conditions, respectively. Therefore, VA contains only known entities and can be 
calculated explicitly. By summing up eqns (15) and (16) over all connected 
nodes, the global stiffness matrix and pseudo-load vector can be constructed. 
     After resolving the sensitivities of the displacement increment, u, the update 
of the sensitivities of the state variables is done in a postprocessing step. As the 
use of Oldroyd rates in the constitutive formulation gives a compute-efficient 
fully consistent linearization of the stress update equations, the same stiffness 
matrices may be used in direct deformation modelling and in the direct 
differentiation sensitivity analysis. Therefore, the latter one is performed at the 
end of each time increment, after convergence of the non-linear state variable 
update through the Newton-Raphson iteration. In the direct differentiation 
calculation, each increment is treated in three stages: 
1. Calculation of the pseudo-stiffness matrix and pseudo-load vector from eqns. 
(14) and (16). 
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2. Solution of eqn (14), which is a linear equation, for each material parameter to 
obtain the unknown displacement increment derivatives. 
3. Back substitution of the displacement increment derivatives to obtain the 
updated derivatives of geometry and the state variables at the end of the 
increment. 

5 Numerical optimization procedure 

For the indentation test, the objective function to be minimized by a numerical 
optimization algorithm is made up of the difference between the experimental 
and modelled displacement-into-surface, h and h’, respectively, which are a 
function of the independent load P: 

    



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2

1
. (17)

     A gradient-based optimization algorithm requires the derivative of the 
objective function with respect to a material parameter , given as 
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     The Hessian matrix is then 
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     As the second term of the sum is known to adversely affect convergence, this 
term is neglected, and the approximated Hessian labelled as H’. The 
minimization algorithm iteratively calculates the material parameters using 
standard Gauss-Newton algorithm. Additional experimental data can be included 
through mapping the residual imprint remaining after complete load removal, 
Bolzon et al. [5]. The objective function will be extended by a term comprising 
the differences of experimental and modelled imprint. For quantifying the 
residual imprint, the total vertical displacement, hres (rl) of the contact surface at a 
set of M fixed radial locations rl, with respect to a chosen reference point, for 
example the imprint centre, called r0, is used, and an aggregate objective function 
takes the form: 
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200

2

11
.(20)

     In practice, the state variable history is calculated by solving the direct 
deformation problem using the finite element method. Subsequently, the 
derivative of h is calculated by linear update, as described above. The objective 
function minimization is performed through the overall optimization loop. In the 
present study, the system response considered is the displacement-into-surface, 
which has the same order of magnitude as the residual imprint. Therefore, no 
scaling factor needs to be introduced in eqn (20), apart from the scaling with 
respect to the number of data available for each term, N and M. 

 © 2009 WIT PressWIT Transactions on Engineering Sciences, Vol 62,
 www.witpress.com, ISSN 1743-3533 (on-line) 

132  Surface Effects and Contact Mechanics IX



     From uniaxial tension/compression tests for material parameter identification 
of elasto-plastic materials in Mahnken and Stein [7], it was found that the 
compressive cycle is necessary for uniquely determining isotropic and kinematic 
hardening parameters. In the absence of a compressive cycle with reverse plastic 
flow, it is not possible to separate kinematic from isotropic hardening. In case the 
Hessian matrix is available, correlation or cosine matrices can be calculated and 
used to visualize the material parameter correlation. The cosine matrix indicates 
if the different sensitivities are co-linear. Even if the approximated Hessian 
matrix in eqn (19) does not include terms with the second order derivatives, it 
can give an indication of the parameter correlation. In fact, H’ is equivalent to 
the Hessian matrix if the objective function is exactly zero and as such it should 
give a sufficient information about parameter correlation in indentation testing. 
The cosine matrix of the Hessian matrix in eqn (19) is defined according to 
Forestier et al. [10], without summation over double indices, as 

jjii

ij
ij

HH

H
c




 .        (21) 

     The total correlation between material parameters is quantified by the 
correlation factor, k, defined as  

72

9

,1,





jiji
ijck .          (22) 

6 Finite element model 

The finite element model of the indentation test consists of an axisymmetric 
model discretizing both the indenter and the specimen as flexible bodies. The 
spherical indenter has a tip radius of 5 m and the overall shape is a cone with an 
opening angle of 60 degrees. Quadratic elements with displacement degrees of 
freedom have been used. Contact constraints are fulfilled by using C2-continuous 
quadratic node-to-segment contact elements with a modified C2-continuous 
logarithmic barrier potential according to Kloosterman [11]. Instead of an 
augmented Lagrangian contact algorithm, a similar algorithm with intermediate 
loops has been used, where the penalty parameter is increased from one 
intermediate loop to the next. The motivation is to have an explicit form of the 
contact tractions, unlike the augmented Lagrangian algorithm, where the contact 
tractions are calculated iteratively in the intermediate loops, which then have to 
be performed in the sensitivity analysis as well. At the end of each intermediate 
loop, an extrapolation according to Dussault [12] is performed in order to 
improve convergence. A line search method is included into the Newton-
Raphson iteration loop in order to improve overall convergence. 
     The finite element calculations are performed under load control, because 
most nanoindenters operate in this mode and the noise on load is usually smaller 
than that on the displacement measurements. Computations of the indentation 
test showed that at indentation loads, mesh locking becomes an issue. This 
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problem was overcome by the use of nine-noded fully integrated quadratic 
elements. However, it should be noticed that such elements require larger 
computing times.  

7 Results 

In the first place, the correlation factor, k, has been calculated to assess 
parameter correlation in parameter identification based on nanoindentation 
testing. It was found that a hold period is crucial for reducing the parameter 
coupling between viscosity parameters on the one hand and elastic and plastic 
material parameters on the other hand, reducing k from 0.98 to 0.66 for a single 
load cycle. Inclusion of residual imprint data, according to eqn (20), provided 
some decoupling between the elastic parameter and the plastic parameters, 
reducing k to 0.52. However, the parameters within these three groups of 
material parameters, i.e. elastic, plastic and viscous, remained nearly fully 
coupled. It was somewhat striking to note that with the hysteresis produced 
during reloading in a second load cycle, no uncoupling between isotropic and 
kinematic hardening parameters was monitored, whereas in Huber and 
Tsakmakis [2], this hysteresis can be used successfully for parameter 
identification in neural network-based parameter identification. 
     In a last stage, material parameter identification was performed using true 
experimental nanoindentation curves. The material under investigation was an 
aluminium alloy, Dural, where unfortunately only a limited number of material 
parameters from tensile testing is available. Three indenter tip radii where used: 
5m, 10 m and 50 m, and the indenters are labelled R5, R10 and R50, 
respectively. It should be noted that these are nominal radii. In the finite element 
models, measured radii have been used. 

Table 1:  Material parameters identified from first load cycle. 

Parameter R5 R5 err R10 R10 err R50 R50 err 
E (MPa) 60462 3.8% 72634 4.0% 80860 3.2% 
 (-) 0.37 9.7% 0.24 11.9% 0.40 1.7% 
Y (MPa) 228 12.6% 77 67.3% 745 6.6% 
R (MPa) 143 24.7% 673 17.0% 189 79.2% 
 (-) 28.0 5.2% 7.1 9.4% 7.8 49.0% 
Hkin (MPa) 169 5.0% 479 14.3% 741 120.2% 
b (-) 31.2 15.4% 7.4 9.9% 8.5 40.1% 
 (MPa s)1/m 1.6E+08 146.7% 7.0E+06 67.3% 1.9E+07 39.6% 
m (-) 4.3 15.6% 3.2 6.8% 2.0 12.6% 

 (MPa) 624 1.2% 1468 11.8% 2045 70.4% 
 
     In table 1, the material parameters identified from input data made up of the 
first load cycle only are given. A comparison with the only reliable material 
parameter available, the Young’s modulus of 73000 MPa, shows that the 
indenters R5 and R50 give erroneous results whereas indenter R10 gives a very 
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accurate value of the Young’s modulus. Residual imprint measurements indicate 
that the shapes of the indenters R5 and R50 significantly deviate from the 
assumed spherical shape. The Poisson’s ratio, assumed to be around 0.3 for 
metals, is also determined quite reliably. However, the indenter R50 gives poor 
values for the plastic material parameters, as even the yield stress Y lies above 
the strength of Dural, which is approximately 500 MPa. It can be realized that , 
the weighted sum of Y, R and Hkin, representing the maximum hardening stress, 
is identified with very little scatter. The hardening exponents  and b are high for 
all indenters, especially for R5, and will produce nearly full hardening after only 
small amounts of plastic deformation. The viscosity  exhibits large scatter and 
is therefore unreliable. In fact, as viscosity plays a role in indentation testing 
because of the high compressive stresses occurring in indentation testing, the 
viscosity parameter should be considered as no more than numerical parameters 
used for introducing the right amount of creep deformation found in indentation 
testing, but irrelevant in room temperature applications. 

Table 2:  Material parameters identified from the two-cycled load history. 

Parameter R5 R5 err R10 R10 err R50 R50 err 
E (MPa) 58593 2.9% 72281 3.4% 70812 1.1% 
 (-) 0.38 28.1% 0.25 14.8% 0.49 0.3% 
Y (MPa) 325 7.7% 66 58.9% 688 6.2% 
R (MPa) 113 14.6% 739 1.7% 33 132.2% 
 (-) 15.6 19.8% 6.7 27.4% 5.6 53.7% 
Hkin (MPa) 126 22.8% 488 6.6% 52 80.5% 
b (-) 18.8 28.5% 7.4 21.0% 5.2 52.2% 
 (MPa s)1/m 3.3E+07 88.4% 9.7E+06 37.8% 7.6E+04 77.8% 
m (-) 4.3 12.8% 3.1 6.1% 4.0 64.7% 

 (MPa) 627 2.7% 1536 5.4% 799 7.7% 

Table 3:  Material parameters identified from the two-cycled indentation 
test, with and without residual imprint data, for nominal tip radius 
of 10 m. 

Parameter R10i R10i err R10 R10 err 
E (MPa) 45924 7.5% 72281 3.4%
 (-) 0.39 20.0% 0.25 14.8%
Y (MPa) 507 2.6% 66 58.9%
R (MPa) 439 23.7% 739 1.7%
 (-) 1.1 7.2% 6.7 27.4%
Hkin (MPa) 400 31.7% 488 6.6%
b (-) 1.6 24.5% 7.4 21.0%
 (MPa s)1/m 1.7E+06 56.7% 9.7E+06 37.8%
m (-) 6.8 25.5% 3.1 6.1%

 (MPa) 1546 10.0% 1536 5.4%
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Figure 1: Indentation curves for indenter tip radius of 10 m: experimental 

(symbols), computed from parameters identified from load curves 
only (solid line) and from load curve and imprint data (dotted 
line). 

     In table 2, material parameters identified from the full load history comprising 
two consecutive load cycles, with the second peak load being twice the first load 
peak, are shown. No major improvement over the parameters presented in table 1 
are visible, with the largest change being found in the viscosity. A more 
prominent change in material parameters takes place if residual imprint data are 
included into the objective function according to eqn (20), see table 3. Here, one 
can see that on the one hand, the Young’s modulus deteriorates, whereas the 
yield stress increases. The hardening exponents  and b are also much lower. It 
can be seen in Fig.1 that the indentation curve obtained from the parameters 
identified with residual imprint data does not fit well with the experimental 
indentation curves, unlike the indentation curves obtained from indentation curve 
data only. 
     The situation is completely different for the modelled residual imprint, where 
pile-up takes place for experimental input including residual imprint 
measurements, whereas sink-in occurs in the absence of imprint data, which is in 
contradiction to the experimental residual imprint data, as depicted in Fig.2. It is 
known that the ratio between yield stress and Young’s modulus determines 
whether pile-up or sink-in occurs, which is a fundamental aspect of each specific 
material. This is a clear indication that the yield stress found without imprint data 
is much too low, the value determined with imprint data seems much more 
appropriate from the point of view of pile-up. However, this value lies above the 
strength given by the manufacturer. It should be noted that the residual imprint 
data of the centre of the imprint have been removed from the objective function 
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because they do not fit the measured residual displacement into surface from the 
indentation curve. The absence of data points between 3 and 7 m in radial 
direction stems from the fact that white light interferometry does only yield data 
for surfaces whose inclination with respect to the horizontal lies below a 
magnification-dependent threshold, 25° in our case, leading to a large blind spot 
in case of deep imprints. It has to be said that the residual imprint measurements 
are highly affected by experimental scatter, either caused by surface defects like 
scratches, or by polycrystalline anisotropic deformation taking place. 
 

 

Figure 2: Residual imprint profiles for indenter tip radius of 10 m: 
experimental (symbols), computed from parameters identified 
from load curves only (solid line) and from load curve and imprint 
data (dotted line). 

     To resume, the identification of material parameters from nanoindentation 
testing coupled to an inverse method is not very reliable in the current form, with 
the exception of the Young’s modulus, where quite reliable results with very low 
scatter may be obtained. Progress has to be made for determined the plastic 
material parameters, and a more efficient use of residual imprint data may be 
required for achieving more reliable results. Another issue is the influence of 
surface roughness on the indentation curves, as stated in Klötzer et al. [8], which 
has a significant impact on the initial part of the indentation curve, because 
surface asperities are less stiff than the modelled, perfectly flat specimen surface. 
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