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Abstract

This paper deals with the expansion of capillary force range with a concave probe-
tip for micromanipulation. From numerical simulation, we found the following; the
concave probe-tip can generate a much larger capillary than a flat one, provided
it is designed to fit the convex surface of the object; the more wettable a material
is, the greater capillary force it can generate; the magnified capillary force can be
reduced/controlled by liquid volume regulation. To prove this, we measured the
capillary force for a given gap distance between a spherical object and a concave
surface coaxially fabricated in a cylinder. We used three different materials (glass,
stainless steel, and polytetrafluoroethylene) to check the influence of contact
angles. The liquid volumes were given in the range from one hundredth- to
ten-times the radius of the cubed sphere. Comparison between our experimental
data and the theoretical prediction expressed in the normalized form shows good
agreement, if the liquid volume is larger than a certain value. This suggests that
micromanipulation by capillary force should be more practical by using probes
with concave tips specifically designed for the object.
Keywords: micromanipulation, hydrostatics, liquid bridge, capillary force.

1 Introduction

Recently, micromanipulation techniques have been in demand to fabricate
highly functional micro-devices or micro-electro-mechanical-systems (MEMS). In
micromanipulation, the influence of adhesional force is extremely large compared
to gravitational force [1, 2]. Furthermore, adhesional force has large dispersion

 © 2007 WIT PressWIT Transactions on Engineering Sciences, Vol 55,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Computer Methods and Experimental Measurements VIII  325

doi:10.2495/SECM070311



because of its dependence on surface condition such as surface roughness, at each
contact point. Thus, in order to realize reliable micromanipulation, we need a force
that is controllable and greater than the adhesional force, or some mechanism to
avoid the dispersion of adhesional force. Saito et al [3, 4] have investigated the
mechanical force required to slip and roll an object in considering the adhesional
effect. The mechanical method, however, might damage the object. Takahashi et
al [5] have evaluated the force generated by Coulomb interaction, although the
electrostatic method might cause a discharge or melt an object [6]. In order to avoid
damaging the manipulated object, use of capillary force is considered effective if
use of liquid is allowed. Actually, Tanikawa et al [7] have picked/placed an object
with a micro-hand and a micro-drop, but they have not provided any analysis of
the capillary force involved. We have proposed a scheme for micromanipulation
based on capillary force by regulation of the liquid volume [8]. In our previous
scheme, it is assumed that the object shape is spherical, and the probe and substrate
surfaces are flat. The profile of a liquid bridge between two solids was analyzed
based on Orr’s theory [9], and the force generated for the profile was presented
clearly. These analyses have indicated the feasibility of the proposed scheme.
The range of the force, however, never seems large enough for practical/reliable
micromanipulation. In this study, we propose a probe with a concave-tip as shown
in fig. 1. The concaved probe-tip would generate greater capillary force than a flat
probe-tip so that it can expand the possibility of picking up manipulation. If a large
amount of liquid was supplied, liquid must overflow to a flat surface, and capillary
force would be equivalent to the flat probe-tip case for successful placing. Through
both numerical estimation and its experimental verification, the magnified range of
capillary force is presented as a function of concavity radius, wettability, and liquid
volume.

Pick

(I) (II) (III)

Fp

Place

(IV) (V) (VI)

Fp

Fs

Figure 1: Schematic illustration of manipulation procedure: (I) positioning,
(II) lowering, (III) picking up, (IV) positioning, (V) lowering, and
(VI) placing.
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Figure 2: Liquid bridge between a spherical object and a concave shaped probe:
(a) whole menisci (b) menisci end at the probe surface.

2 Analysis of the liquid bridge

Fig. 2 shows an axisymmetric model for the analysis of a liquid bridge between
a spherical object and a concave probe-tip, where R is the radius of the
object, Rp is the radius of the concavity, D is the distance from the probe to
the object, ϕ is the filling angle of the object, F is the attractive force acting
on the object, and V is the volume of the liquid bridge between two solids. The
meniscus forms contact angles θ1 at the object and θ2 at the probe-tip. The profile
of meniscus is expressed by the cylindrical coordinates(X ,Z). The value of ε
expresses the angle between the normal to the meniscus and the vertical axis. We
make the following assumptions. (i) The influence of gravity is negligible and the
profile of the liquid bridge follows Young–Laplace equation [9]; (ii) the dynamic
flow of the liquid is negligible; (iii) the contact angles are determined by Young’s
equation [2].

Capillary force F can be expressed as the sum of the pressure difference force
and the surface tension force:

F = −∆PπX1
2 + 2πσX1 sin ε1, (1)

where ∆P is Laplace pressure, i.e., the hydrostatic pressure difference between
inside and outside the liquid, σ is the surface tension, X1 is the X-coordinate at
the end-point of the profile on the object, and ε1 is the ε-angle corresponding to
the point X1.

The Laplace pressure can be expressed by Young–Laplace equation, which
relates the pressure difference to the local mean curvature H and the surface
tension σ;

∆P = 2Hσ. (2)

Since ∆P is hydrostatic, and thus, constant at any local point, the surface of the
meniscus has the same mean curvature everywhere. As shown by Orr [9], the value
of H in equation (2) can be expressed by geometrical parameters as

2H =
d

dX
(sin ε) +

sin ε

X
. (3)
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Since the left-hand side of this equation is constant, it can be solved as a two-point-
boundary value problem, for which the boundary conditions are the ε-angle and X-
coordinates of the menisci end on the solid surfaces. The ε-angles are determined
by the slopes of the solid surfaces and the respective contact angles θ1 and θ2 (see
fig. 2(a) and (b)). Fig. 2(b) shows three boundary states on the probe surface, which
appears (1) on the concavity, (2) at the brim, and (3) on the flat surface. If one of
the menisci end-point is on the concavity (see fig. 2(b-1)), the boundary conditions
and corresponding Z coordinate can be written as

ε1 = θ1 + ϕ, X1 = R sin ϕ, Z1 = D + R(1 − cosϕ),
ε2 = π − θ2 + φ1, X2 = Rp sin φ1, Z2 = Rp(1 − cosφ1),

}
(4)

where φ1 is the filling angle of the concavity (0 ≤ φ1 ≤ π
2 ). When the menisci

end reaches the brim of the concavity as fig. 2(b-2), i.e., in the case of φ1 = π
2 , the

boundary condition on the probe surface is

ε2 = π − θ2 +
(π

2
− φ2

)
, X2 = Rp, Z2 = Rp, (5)

where φ2 is the angle changing at the brim of the concavity (0 ≤ φ2 ≤ π
2 ). In the

case of fig. 2(b-3) for φ1 = φ2 = π
2 , the boundary can be shown as

ε2 = π − θ2, X2 = Rp + φ3, Z2 = Rp, (6)

where φ3 is the X-displacement overflowed to the flat surface.
The boundary-value problem has the solution [9]. The meniscus profile (X, Z),

the distance D, the liquid volume V , and also the capillary force F can be
calculated from given four parameters; contact angles θ1 and θ2, the filling angle
ϕ, and the parameter φ(≡ φ1 + φ2 + φ3). If the volume V is given in advance
instead of the parameter φ, the value of φ must be determined so that V could
be equal to the given value. Then, the relation between D and F , which has the
conservative liquid volume and given contact angles, can be plotted as a function
of the filling angle ϕ. To generalize the following discussion, all the parameters
are normalized as

z =
Z

R
, x =

X

R
, d =

D

R
, f =

F

πRσ
, v =

V

R3
, rp =

Rp

R
. (7)

Fig. 3 shows a relation between the normalized maximum capillary force and
the normalized concavity radius for v = 0.10. Both horizontal and vertical scale is
logarithmic. Note that the variable of horizontal axis is not rp but rp−1. Maximum
value of the capillary force is the critical value of the object detachment from the
concaved probe-tip. This figure suggests that as the radius of concavity approaches
to the sphere, the maximum capillary force increases drastically, and also suggests
that if the object and probe have smaller contact angles, capillary force becomes
much larger than that for relatively large contact angles.

On the other hand, the capillary force should be reduced for placing
manipulation. The solid lines in fig. 4 shows a relationship between the normalized
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Normalized radius of concavity, rp-1
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Figure 3: Relation between the normalized maximum capillary force fcap. and
the normalized radius of concave curvature rp for the normalized liquid
volume v = 0.10.
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Figure 4: Relation between the normalized maximum capillary force fcap. and the
normalized liquid volume v for θ1 = θ2 = 60◦.

maximum capillary force and the normalized liquid volume for θ1 = θ2 = 60◦

and rp = 1.1, 1.2, 1.5, and ∞. The infinite value of rp means the sphere-plate
model. As approaching rp to 1, the force difference by liquid volume regulation
can be expanded. This means that the force control by the liquid volume is valid
for reliable micromanipulation.
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Figure 5: Schematic illustration of experimental system used. An electronic
balance and a three-dimensional automated stage are fixed on a
baseplate. An object functioning as a concave probe-tip is placed on the
balance plate. The bigger circle shows the magnified cross-section of the
smaller circle.

3 Measurement of capillary force

Fig. 5 shows the experimental system used for verification of numerical analysis.
The experiment was performed in atmosphere. The order of the object size was
determined according to the Bond Number (ρgR2/σ, where ρ is the density of
the fluid and g is the gravitational acceleration). Since the influence of gravity
is negligible as long as the Bond Number is small enough, we adopted R =
1.984 − 3.175 × 10−3 [m] for the object radii corresponding to the bond number
ρgR2/σ = 0.53 − 1.35, which might shift the capillary force due to the gravity
no more than 10%. The liquid used was purified water with σ = 0.073 [N/m],
which was refined through ion-exchange membrane process. A micro-pipette with
a volume resolution of 2 × 10−11 [m3] was used to determine the volume of the
liquid. An electronic balance (Sartorius, TE153S) with a resolution of 10−5 [N]
was used to measure the force between the object and the probe-tip. Automated
precise stages (Suruga Seiki, K701-20LMS) with a resolution of 5×10−8 [m] were
used to adjust the position of the object and the probe. Probes having concaved
tips were fabricated with Rp = 3.1 × 10−3 [m] and 3.3 × 10−3 [m] (of glass
anpolytetrafluaroethylene: PTFE); with Rp = 3.1 × 10−3 [m] (of stainless steel).
Spherical objects of several sizes were attached to steel rods. With the combination
of the radii, the value of rp can be set to 1.033-1.562. Contact angles for the
materials were determined by observing the edge of a water-drop deposited on
a plate using a video microscope: 50◦ for glass, 75◦ for stainless steal, and 85◦ for
PTFE.

Fig. 6 shows the measurement value of the capillary force f as a function of the
distance d for the liquid volume v = 0.08. The experimental value of the capillary
force is obtained as square marks in an approaching process, and as triangle marks
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Figure 6: Relation between the normalized capillary force f and the normalized
distance d for the normalized radius of concave curvature rp = 1.19 and
the normalized liquid volume v = 0.08. Squares, and triangles denote
data of force measurement for approaching and detaching process,
respectively.

in a detaching process. Such hysteresis occurs due to the inequality of the contact
angle between these processes. The broken line and the dotted line denote the
theoretical value of the capillary force for the fixed contact angle θ1 = θ2 = 60◦

and 75◦ (Sliding Mode according to Pitois [10]). The solid line denotes the value of
the force for the contact angle transition from 60◦ to 75◦ (Pinning Mode according
to Pitois [10]). In this case, because of contact angle hysteresis, the observed
capillary force never achieves the maximum value of the theoretical prediction.

The relations between the normalized maximum capillary force fcap. and
the normalized radius of concaved curvature rp for a given normalized liquid
volume v = 0.08 are shown in fig. 7. Lines denote the values estimated from
the numerical analysis for contact angles θ1 = θ2 = 50◦, 75◦, and 85◦. Circle,
square, and triangle marks denote the values actually measured in the experiment.
Both horizontal and vertical scales are logarithmic. Note that the variable of the
horizontal axis is rp − 1 instead of rp. The experimental results are in good
agreement with the theoretical predictions for all three materials. The force fcap.

drastically increases as rp approaches 1,which suggests that a probe with the
concave dimension closer to the convex dimension of the object can generate
much larger capillary force. Probes made of the material with small contact angle
generate much larger capillary force. For rp closer to 1, the larger differences are
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found between the measured values and the theoretical predictions. We presume
the reason for this is that the error of the positional adjustment has relatively larger
influence on the generated force as the concave radius approaches the convex
radius of the object.

Normalized radius of concavity, rp-1
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Figure 7: Relation between the normalized maximum capillary force fcap. and
the normalized radius of concave curvature rp for the normalized
liquid volume v = 0.08. Circles, squares, and triangles denote data of
force measurement for glass, stainless steel, and polytetrafluoroethylene
(PTFE), respectively.

As shown in fig. 8, magnified capillary force can be controlled by the
regulation of liquid volume. Circle, triangle, and square marks are expressing the
experimental values. These are in good agreement with theoretical predictions for
v > 0.1. In the case of v < 0.1, the experimental value of capillary force and
the calculation considering contact angle hysteresis (broken lines) are almost the
same. The broken lines are calculated by neglecting the capillary force during
the pinning mode (0 ≤ d ≤ dpin). Assuming the pinning mode distance dpin is
constant, the capillary force is reduced with decreasing liquid volume. This means
that too small supply of liquid causes less capillary force generated. In order to
realize efficient and reliable manipulation, the normalized liquid volume should
be controlled from 0.1 to 10.
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Figure 8: Relation between the normalized maximum capillary force fcap. and the
normalized liquid volume v for glass specimen and rp = 1.116.

4 Conclusion

Through both analysis and measurement of capillary force, this study clarifies
the most important factors for reliable capillary micromanipulation by concave
probe, i.e. the material wettability, the concave shape and dimension, and the
amount of liquid supply. The shape of the probe-tip can be designed as shown in
fig. 1 so that the range of the capillary force can be extended due to the change
of the apparent contact angle for a given liquid volume. The more wettable a
material is, the greater capillary force it can generate. The magnified capillary
force can be reduced/controlled by liquid volume regulation. This suggests that
micromanipulation by capillary force has a great potential for a wide range of
applications. In the capillary force measurement, the contact angle hysteresis
can be observed, and we presume that it reduces the maximum value of the
capillary force in case of relatively small liquid volume. For actual manipulation, a
mechanism that is able to supply proper amounts of liquid needs to be developed.
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