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Abstract 

This article presents some results of numerical experiments on the reconstruction 
of contact stresses by using synthetic data on displacement monitoring on a 
traction-free surface. The corresponding boundary value problem is ill-posed 
therefore a regularisation procedure based on the SVD decomposition is 
employed. Statistical analysis of results has been performed. 
Keywords:  contact problem, plane elasticity, boundary value problems, inverse 
problems, SVD regularisation.  

1 Introduction 

There are many applications where data on stresses or displacements may not be 
available on the entire boundary of a body (including internal boundaries). Such 
problems appear in strain-stress measurements, interferometry, rock mechanics, 
monitoring the fracture development in strength tests etc. They require the 
consideration of a specific boundary value problem, BVP, which is overspecified 
on a part of the boundary and underspecified on the rest of it. 
     The theory of classical BVPs of plane elastostatics is fully presented in the 
classical monograph by Muskhelishvili [1], it assumes that two scalar boundary 
conditions are given on the entire boundary of a domain. In contact mechanics 
the BVPs are usually formulated as the mixed type problems when 
displacements are given in the contact zone and tractions on the rest of the 
surface. Other formulations of contact conditions are discussed in detail in 
Johnson [2]. In all these cases the boundary value problem is well posed, 
therefore it possesses a unique and stable solution.  
     Despite classical boundary conditions describe a wide class of mechanical 
phenomena there is still the necessity to use additional assumptions in 
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formulation of the boundary conditions. This can lead to paradoxical results, as 
for instance, in the problem for a flat stamp indented into the boundary of a half-
plane without sliding. The exact solution shows oscillation of the contact stresses 
in a small zone near the stamp edges, which does not obey the assumption that 
the stamp and the half-plane are in contact everywhere. This effect should not be 
overlooked if one intends to investigate the stress distribution under the stamp 
edges, which presents the case of interest, for instance, for fracture development. 
Thus, corrections of the boundary conditions may be required to provide the 
consistence of obtained results. However this presumes that some new 
assumptions will be needed for describing the contact conditions.  
     Alternatively the BVPs of this type can be solved with the use of the 
displacement monitoring data over the free boundary outside the contact zone. In 
this case both the displacements and the contact stresses remain unknown under 
the stamp and the BVP is underdetermined on a part of the boundary and 
overdetermined on the rest of it. Perhaps, the first comprehensive analysis of 
solvability of these problems has been reported by Shvab [3] for an isotropic 
elastic domain with the following boundary conditions: displacement vector is 
given on a part of the boundary simultaneously with the stress vector; the rest of 
the boundary has no conditions posed.  This problem can be viewed as 
consecutive problems for holomorphic vectors, on which the proof of uniqueness 
can also be based, e.g. [4]. Methods involving complex variables for 
investigation of this problem in 2D have also been applied [5,6]. The problem 
can be referred to as conditionally ill-posed [3], one can rarely find analytical 
solutions for it (with exceptions for simple domains, e.g. for wedge-like domains 
[5]), therefore the development of stable numerical methods has been the main 
focus during the last years. The considerable progress has recently been achieved 
by researches from University of Leeds (UK) in the development of 
regularisation techniques, iterative methods and algorithms for solving non-
classical BVPs of this type, see for instance [7-10]. In particular, it has been 
shown that methods based on the Tikhonov regularisation provide stable 
solutions in elastostatics, [8,9]. Other studies, e.g. [10-12], confirm this 
conclusion, in particular, it has been found [10,12] that the use of the SVD 
regularisation presents a valuable computational tool in elastostatics. In this 
study the SVD regularisation is applied for stress identification in contact 
mechanics problems. 

2 Mathematical formulation 

2.1 Inverse BVP: displacements are known on traction-free surfaces 

Let Γ be a closed contour separating the complex plane into interior Ω+ and 
exterior Ω– domains. In contact problems one of these domains can be associated 
with one contacting (plane) body, say, Ω+ if one considers finite bodies or Ω– if 
infinite. We further consider the stress state of only one of the contacting bodies. 
The action of another body is replaced by unknown stresses distributed over the 
contact zone, therefore the shape of this body is unimportant in the present 
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formulation and without loss of generality it is assumed that it occupies the 
complement of Ω+(or Ω–) with respect to the whole plane. For the same reason it 
is assumed that elastic moduli of contacting bodies are the same. Stress states in 
both domains can be expressed through sectionally holomorphic functions 
(complex potentials) ϕ(z) and ψ(z) of complex variable z=x+iy by the Kolosov–
Muskhelishvili solution [1]. In particular on the boundary one has the following 
expressions for tractions, t=(t1,t2), and displacements, u=(u1,u2)  

 ( ) ( ) ( ) ( ) ( ) ( )ζΤ−ζκϕ=ζζΤ+ζϕ=ζ WF ,                              (1) 

Hereafter F=t1+it2; W=2G(u1+iu2); ζєΓ is a point on the boundary; G is shear 
modulus, elastic constant κ=3-4ν to for plane strain and κ=(3-ν)(1+ν)-1 for plane 
stress, ν is Poisson’s ratio; Τ(ζ) is boundary value of bi-holomorphic function 

 ( ) ( ) ( )zzzzz ψ+ϕ′=Τ ,                                             (2) 

From (1) it is evident that 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ζ−ζκ=ζΤκ+ζ−ζκ=ζΤκ+ζ+ζ=ζϕκ+ WFWFWF 1,1,1  (3) 

If tractions and displacements on the entire boundary are know it is easy to 
determine complex potentials everywhere inside the domain considered by using 
the integral Cauchy formula as follows 
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Hereafter upper/lower sings refer to domains Ω± respectively; Γ is traversed in 
counterclockwise direction.  
     It should be noted that the functions F(t) and W(t) are dependent on the entire 
boundary, however they can be chosen independently on a part of the boundary, 
which leads to the boundary value problem depicted in Figure 1.  
Let us represent this problem as follows 
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where X(ζ) and Y(ζ) are unknown functions; it is also assumed that 
displacements are monitored on a part of the traction-free surface and therefore 
w(ζ) is known there. The existence of traction-free surfaces does not narrow the 
formulation because due to linearity one can superimpose a solution for known 
tractions on the solution of the problem (5).  
     The problem can be reduced to the consequent determination of holomorphic 
functions by analytic continuation. It is shown, e.g.  [3-5], that this problem has a 
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unique solution. Here we derive an integral equation for the determination of 
unknown functions X(ζ) and Y(ζ) on the basis of representations (4). 
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Figure 1: The problem. 

2.2 Integral equations 

Let us introduce the following integral operators  
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where Sg is singular and Rjg are regular operators. The latter are used in the 
representations for bi-holomorphic function and complex conjugation of Sg  

 ϕ′+ψ+ϕ′ζ=Τ 1RSSS                                         (8) 

 ggg 2RSS −−=                                              (9) 

With the use of these operators one can present the boundary values of the 
functions in (3) in the following form  

 ΤϕΤ=ϕΤ±=ΤϕΤ±=Τϕ±=ϕ 2111 ,, RRSRSRSS ∓∓∓∓∓      (10) 

Substitution of  (3) into (10) results in  
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Now one can derive a system of integral equations on the traction-free boundary 
Γ2 by decomposition of the left hand sides in (11) and applying boundary 
conditions (5) on different parts of the entire boundary.  
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It should be noted that operators S2 are not singular on Γ2, with possible 
exception of the ends of the contour (fixed singularities), therefore the system 
(12) is a system of integral equations of the Fredholm type. Both equations in 
(12) are conditionally ill-posed because they are of the first kind [13], therefore 
there exists a unique solution of this system but it is unstable, which requires 
regularisation. One can formally introduce two stable operators P and Q that 
represent regularised inverse operators of S2 and S2+R2

2 respectively, i.e. 

  ( ) gggg 12
2

212 , −− ≈+≈ QRSPS                            (13) 

By applying these operators to equations in (12) one obtains an approximate 
solution of the system in the following form 
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where the right hand sides in equations (12) are denoted as 

  ( ) wwwfwwf 1
1

1
2

1
2

1
1 , RRSS −++±=−±=                    (15) 

As soon as tractions and displacements on Γ1 are found one can determine 
complex potentials by formulae (3)-(5). It should be emphasised that solution 
(14) is stable with respect to small perturbations in monitored displacements w 
that appear due to experimental errors or limited resolution in measurements. 
Construction of the inverse operators P and Q is, obviously, an important part in 
engineering applications. The next section presents an example employing the 
SVD regularisation, which, as shown in [10,12], is an effective tool for this type 
of problems. 

3 Numerical analysis  

3.1 Integral equation for half-plane 

Let us consider the lower half-plane under a symmetric load distributed on (-1,1) 
while displacements are monitored on (1,1+L) as shown in Figure 2. In this case 
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the boundaries are Γ1=(1,1+L) and Γ2=(-∞,1)∪(1+L,∞); it is also evident that the 
regular operators R1=R2=0. Hence the system (12) assume the following form 

  
( )
( )





+−=−κ

−−=+

wwYX

wwYX
12

12

SS

SS
                                   (16) 

Here the lower sign is chosen since the lower half-plane is associated with Ω–. 
The sum of equations in (16) results in S2X=-2(1+κ)-1w, which is the following 
integral equation for the determination of unknown tractions under the stump 
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After differentiation of (17) with respect to the contour variable one obtains the 
relationships between normal stresses and derivatives of displacements that are 
often used in contact problems for half-plane, e.g. [2].  
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Figure 2: Scheme of displacements monitoring. 

It should be noted that it is possible to derive an analytical solution of (17) if 
L=∞, see [5], however no analytical solutions for the case of finite L are known. 
We further apply a numerical approach similar to [12], which seems also to be 
suitable for more complex geometries.  
     Firstly one can rewrite (17) for the case of symmetrical polynomial load and 
for simplicity to neglect shear stresses as shown in Figure 2. This leads to the 
following integral equation 

 )(
1
2)(,11),()(

2
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0
22 xu

x
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tN π
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=+<<=

−∫            (18) 

Here N(t) stands for the normal component of the resultant vector acting under 
the stump, the right hand side g(x) depends on normal displacement only due to 
the absence of shear stresses.  
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     Equation (18) is further reduced by the collocation method to a system of 
linear algebraic equations AC=G which solution (it depends on L) is found by 
the SVD method as follows 

 )(, LT CCUGDVC =′′=                                  (19) 

Here U (mxn) and V (nxn) are orthogonal matrices in the SDV decomposition 
A=UDVT and D (nxn) is a diagonal matrix formed by the singular values, dj, 
placed in descending order, d1≥d2≥…≥dn. the matrix D′ is the regularised inverse 
of D that has the rank k: D′=diag{d1

-1,d2
-1 ,…dk

-1,0…0}. 

3.2 Statistical analysis 

This subsection presents the results of numerical experiments with synthetic data 
on displacement monitoring. 

3.2.1 Synthetic data 
To model displacement monitoring we introduce synthetic data as follows. 
a)“True” stresses have been specified in the contact zone as polynomials of the 
fourth degree N(x)=c0+c1x+c2x2+ c3x3+c4x4. In jth test all ck=0 except cj=1, 
Ntrue(t)=(k+1)tk, which provides unit resultant force acting under the stump. 
b) Ideal right hand sides corresponding to the loads above have been evaluated 
analytically on (1, 1+L) and than computed at collocation points (the number of 
which was set as n= 40 for all L varying within 0.01-10). 
c) Distortion has been generated at each collocation point by introducing an 
independently generated random error normally distributed within ±5%.  
     Therefore in calculation the vector G had the components
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where ξm, m=1,..,n are Gaussian errors. The integrals Ik,m have been evaluated 
exactly, which provides exact representation of the matrix A, so the errors are 
only associated with the left hand side of the linear algebraic system of 
equations. 

3.2.2 Examples and statistics 
We study the following arrays of results in the set of 200 numerical experiments 
(k=1…200) for the resultant force 

 ( ) { }k
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and the divergence of the recovered and true contact stresses

 ( ) ( )( ) { }k
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
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Examples of contact stress recovery are presented in Figure 3 for the following 
cases 
(a) – constant load with maximum and minimum errors of Errmax=0.039, Errmin=-
0.041 normally distributed with Mean=1.2.10-3, StDev=0.03, recovered resultant 
force is Prec=0.999;  
(b) – linear load with Errmax=0.039, Errmin=-0.041 Mean=1.9.10-3, StDev=0.07; 
Prec=1.002;  
(c) – parabolic load with Errmax =0.047, Errmin=-0.03 Mean=-6.0.10-3, 
StDev=0.06; Prec =1.006;  
(d) – cubic load with Errmax=0.038, Errmin=-0.028 Mean=4.8.10-3, StDev=0.086; 
Prec =1.005  
In all these examples the length of the monitored zones was L=1. 
Statistical properties of (21) and (22) are presented in Figure 4 as functions of L. 
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Figure 3: Examples of contact stresses recovering.  

4 Conclusions 

Solution of non-classical contact problem (5) for plane bodies is presented in 
operator form (14). The results of numerical experiments on the reconstruction 
of contact stresses demonstrate the SVD regularisation is an effective tool that 
provides stable numerical solutions. Statistical analysis of the results has been  
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performed for the case of half-plane loaded by polynomial loads. It shows that 
resultant forces and traction distributions are better reconstructed for longer 
monitoring zones (Figure 4). 
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Figure 4: Means and standard deviations: P (left) and ∆ (right).  
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