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Abstract

This paper explains a method of how to reduce the dimension of a contact problem
under study. In particular it is shown how the three-dimensional adhesive contact
can be simulated on the basis of a one-dimensional model. Single contacts as well
as multi-asperity contacts with adhesion are discussed in some detail. If lubricants
are present it is necessary to solve simultaneously for elastic deformations of
contacting bodies and fluid flow between the bodies. We show that the problem
can be considerably reduced in the case when the lubrication layer is so thin
that the main contribution to the contact interaction comes from a small part of
micro contacts with a distance much smaller than the average distance between
the bodies. In this case, it is possible to model the dynamics of lubrication by
non-conservative forces between surface elements depending both on the distance
and relative velocity. The presented reduction method is currently used for the
simulation of chemical–mechanical polishing.
Keywords: elastic contacts, computational contact mechanics, friction, adhesion,
lubrication, chemical–mechanical polishing.

1 Introduction

Contact and friction play an important role in many technical applications
ranging from traditional applications like bearings, clutches and brakes [1] over
manufacturing technologies [2, 3] to modern applications like micro-electro-
mechanical systems [4]. Further technological progress in these fields requires
a better understanding of the friction phenomenon and the development of
appropriate simulation tools.

Many tribological systems belong to the class of fractal systems: in friction
processes, both the microscopic and macroscopic scales may play an essential
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role [4, 5]. The multi-scale nature of friction processes, however, makes the
simulation of such systems difficult. The need of including many scales and
physical processes in a simulation model leads to the development of reduced
simulation methods.

One of the possibilities to reduce the computation time is to use hierarchical
simulation methods [6]. In the present paper, another strategy is discussed:
substitution of three-dimensional systems by one-dimensional systems. The basis
of the reduction are the following two ideas [7]: (1) The elastic contact energy
is a local quantity which only depends on the configuration and deformations in
the vicinity of a micro contact, but does not depend on the size and the form
of the body as a whole. (2) The interaction between micro contacts is of minor
importance. Then the dimensionality of the multi-contact system plays no role
as long as the behaviour of a single asperity and the statistics of asperities are
modelled correctly.

The one-dimensional model is currently used to study the chemical–mechanical
polishing [3]. In this application, elasticity, plasticity, lubrication, adhesion and
the surface topography are considered in the simulation tool. Because of this
complexity and the need to study a sufficiently huge piece of the specimen to be
polished, simulating the evolution of the surface topography in the course of the
polishing process is only possible with the proposed model.

In this paper the elastic contact is discussed in detail. Much attention is paid on
how to set up the parameters of the one-dimensional model (elastic properties,
surface topography). Subsequently two extensions are discussed: adhesion and
lubrication.

2 Elastic contact

2.1 Single contact

The first main idea of the proposed reduced description is the following [7, 8]:
consider the three-dimensional contact problem with relative radius of curvature
R3 and elastic modulus E∗. The relation between normal force F3 and approach d
reads [9]

F3 (d) =
4
3
E∗√R3d3 , (1)

while the relation between normal force F3 and radius of contact a is

F3 (a) =
4E∗

3R3
a3 . (2)

Now consider the one-dimensional contact problem, depicted in figure 1. The
respective relations are

F1 (d) =
4
√

2cn

3

√
R1d3 , (3)
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Figure 1: Contact between a rigid plate and a rigid cylinder with elastic layer.

F1 (a) =
2cn

3R1
a3 , (4)

where cn is the stiffness per unit length. Note that the distance ∆x between
particles is small compared to the size of the contact. The macroscopic relations
between force and approach and force and radius of contact will be identical for
the three-dimensional and one-dimensional problem if

R1 =
1
2
R3 , cn = E∗ . (5)

Hence, the three-dimensional contact problem can be reduced to a one-
dimensional problem for arbitrary radius of curvature. For the local force in the
one-dimensional problem one gets

f (x) ∝ (
a2 − x2

)
, (6)

which is different from the well-known result for the contact pressure in the three-
dimensional problem [9]. Introducing a stress according to

σ (x) =
f (x)

b
√

δ (x) R1

, (7)

where δ (x) is the local deformation and b is the effective width, yields the desired
relation

σ (x) ∝
√

1 − x2

a2
. (8)

By choosing the effective width b appropriately, the stress according to eqn (7) is
identical to the three-dimensional result. When simulating problems with plasticity
the yield criteria should depend on the stress σ and not on the local force f .

2.2 Multi-asperity contact

The second important idea of the proposed 3D to 1D mapping is that the interaction
between neighbouring asperities is of no importance for the contact problem as far
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as the size of micro contacts is much smaller than the distance between them – and
this is the case in a typical macroscopic tribological system. It is rather the statistics
of heights and radii of curvature which is important for the contact problem
[10, 11]. The statistics of micro contacts determines on one hand the normal
forces between bodies. On the other hand, it determines the real area of contact
and thus the tangential friction forces. The distribution of normal and tangential
forces as well as the distribution of contact areas of micro contacts are the most
important quantities for the understanding and the qualitative characterisation of
tribological systems on the microscale. As we have shown that a single three-
dimensional asperity can be equivalently substituted by a one-dimensional asperity
– independent of the radius of curvature – the next step is to create a one-
dimensional surface with the same statistical properties of the distributions of
height and curvature as the two-dimensional surface of the three-dimensional body.
It will then have the same contact properties as the inital three-dimensional body.
In the present section we study the question whether it is possible to create such
an equivalent one-dimensional surface (line) and if possible, how it has to be done
correctly.

For simplicity, we assume here that a two dimensional surface topography (of
the three-dimensional body) can be characterized by its surface roughness power
spectra C2D (q) defined by

C2D (q) =
1

(2π)2

∫
〈h (x)h (0)〉 e−iq·xd2x , (9)

where h (x) is the height measured from the average plane defined so that 〈h〉 = 0
and 〈.〉 stands for ensemble averaging. Since it is assumed that the statistical
properties of the surface topography are translationally invariant and isotropic, the
surface roughness power spectra C2D (q) only depends on the magnitude q of the
wave vector q [12–14].

Similarly a surface roughness power spectra C1D (q) can be introduced for a
one-dimensional surface topography according to

C1D (q) =
1
2π

∫
〈h (x) h (0)〉 e−iqxdx . (10)

For generating a one-dimensional surface equivalent to the initial two-dimensional
surface, the appropriate surface roughness power spectra C1D (q) must be defined.
The qualitative arguments for the choice of the proper one-dimensional spectral
density are the following: The height distribution of asperities of a fractal surface
has generally the same order of magnitude as the mean square root value of the
height h(x) of the profile. The mean curvature of the asperities has the same order
of magnitude as the mean square root value of the curvature κ = ∂2h(x)/∂x2.
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The mean-square values of height for two- and one-dimensional systems

〈
h2

〉
2D

= 2π

∞∫
0

qC2D (q) dq , (11)

〈
h2

〉
1D

= 2

∞∫
0

C1D (q) dq , (12)

will be equal, if we take

C1D (q) = πqC2D (q) . (13)

It is important to note, that the mean square curvatures
〈
κ2

〉
will then be equal

as well. We now show, that not only the average values of the heights and
curvatures but also their distributions will be almost equal for these systems.
Thus, the transformation eqn (13) defines the rule for generating equivalent one-
dimensional surfaces with the same contact properties as for three-dimensional
bodies. For this sake, we study how the statistics of asperities of both two- and
one-dimensional systems are related to each other. We generated one-dimensional
and two-dimensional surface topographies and determined the statistics of their
heights and curvatures numerically. The surface topography is calculated from the
surface roughness power spectra according to

h (x) =
∑
q

B2D (q) exp (i (q · x + φ (q))) , (14)

where φ (q) = −φ (−q) are randomly distributed in [0, 2π) and

B2D (q) =
2π

L

√
C2D (q) = B̄2D (−q) .

For the one-dimensional case the respective equations are

h (x) =
∑

q

B1D (q) exp (i (qx + φ (q))) , (15)

B1D (q) =

√
2π

L
C1D (q) = B̄1D (−q) . (16)

Numerical generation of surfaces is based on the FFT algorithm rather then on
directly calculating the sums in eqns (14) and (15). For each generated surface
topography the statistics of asperities is calculated. We introduce the following
ratios φ1, φ2 and φ3 which relate the asperity statistics (index p) to the profile
statistics.

φ1 =

√〈
h2

p

〉
〈h2〉 , φ2 =

〈κp〉√〈κ2〉 , φ3 =

√〈
κ2

p

〉
〈κ2〉 . (17)
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Figure 2: Ratios φ1, φ2 and φ3 according to eqn (17) for the 1D surface (top) and
for the 2D surface (bottom), q1 = 2q0, � φ1, ♦φ2, � φ3.

Figure 2 shows φ1, φ2 and φ3 for one-dimensional surfaces (top) and for two-
dimensional surfaces (bottom), for a constant power spectrum with cutting wave
vectors q1 = 2q0

C2D =

{
c for q0 ≤ q ≤ q1

0 otherwise

and C1D according to eqn (13). φ1, φ2 and φ3 hardly depend on the wave number
q0. Further numerical experiments with 2 ≤ q1/q0 ≤ 10 show that this feature
is also present for q1 �= 2q0. From numerical studies with generated one- and
two-dimensional surface topographies (2 ≤ q1/q0 ≤ 10) the following important
conclusion regarding the statistics of asperities (index p) can finally be drawn: if
the surface roughness power spectra are transformed according to eqn (13) the
statistics of asperities will transform according to〈

h2
p

〉
1D

≈ 〈
h2

p

〉
2D

,

〈κp〉1D ≈ 1.8〈κp〉2D ,〈
κ2

p

〉
1D

≈ 2.0
〈
κ2

p

〉
2D

.

Note that according to eqn (5) the relation for the average curvature of asperties
should preferably be 〈κp〉1D = 2〈κp〉2D. Choosing the stiffness cn to get the
correct F (d) relation, the contact radius a will not be exactly equal in the two
models. In the case at hand the relation 〈κp〉1D ≈ 1.8〈κp〉2D leads to about 5%
error in the radius of contact.
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Figure 3: Non-dimensional normal force F̃ = F/FA vs. non-dimensional contact
size ã = a/a0, with adhesion force FA and contact radius a0 at
zero normal force, JKR result (solid line), simulation with the one-
dimensional model (points).

3 Adhesion and lubrication

3.1 Adhesion

For many contact and friction problems it is important to take adhesion into
account. In particular this is important because adhesion may increase the real
area of contact significantly even if no adhesion force is recognised in a pull-off
experiment [15].

In the model discussed above adhesion is not considered, thus the interaction
forces in this model (see figure 1) are repulsive forces only. Adhesion requires
also attractive interaction forces. This can be done by using a Lennard–Jones-type
interaction potential for the interactions between particles of opposing bodies.

Numerical experiments and analytical calculations with the one-dimensional
model yield for the adhesion force FA ∝ √

R1. JKR theory [16] gives for the
three-dimensional problem FA ∝ R3. However for any given but fixed radius of
curvature, the one-dimensional model gives the correct relation between normal
force F and radius of contact a. Figure 3 shows the JKR result (solid line) and
results from numerical experiments with five different values for the radius of
curvature. Thus the three-dimensional adhesive contact problem can be simulated
on the basis of the proposed one-dimensional model under the restriction of having
an arbitrary but fixed radius of curvature. Note that this restriction does not apply
for the elastic contact without adhesion.
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Figure 4: Normal approach of a rigid sphere.

Numerical results for the adhesive contact between rough surfaces especially
the dependence of pull-off force on the roughness are presented in [17].

3.2 Lubricated contacts

The reduced description can also be extend to lubricated contacts under the
condition that only asperities that are very close to asperities of the opposing body
contribute significantly to the total force between the two macroscopic bodies.
The reduction is based on the idea that mixed lubrication can be modelled by non-
conservative forces between surface elements of the contacting bodies, instead of
modelling fluid particles explicitly. Consider the normal approach of a rigid sphere
and a rigid plate separated by a classical Newtonian fluid with constant viscosity η
(figure 4).

The normal force F acting on the sphere can be calculated from the Reynolds
equation and is

F = −6πηR2ḣ

h0
, (18)

where −ḣ is the velocity of approach. Under the assumptions made the main
contribution to the force comes from the immediate vicinity of the mirco contact.
The details of the flow far away form the contact region do not influence the
asperity-asperity interactions. The macroscopic result eqn (18) can actually be
obtained in numerical simulations by introducing an interaction force

Fpp = 4.635
ηR3/2v

r5/2
dr1dr2 , (19)

where r is the distance of the two interacting particles and v is the projection of the
relative velocity onto the direction between them. Note that the interaction force
Fpp between surface elements depends on the distance r according to a simple
power law and is proportional to the relative velocity.
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If cavitation is relevant in the application under study a reduced description is
build on a kinetic equation for the interaction forces [18].

4 Summary

Starting from the idea that for many applications with contacts between randomly
rough surfaces fast simulation tools are required we studied the problem whether
it is possible to reduce the dimension of systems from three to one leaving the
essential contact properties invariant. We have shown that it is indeed possible as
long as the contact area is much smaller then the apparent (macroscopic) contact
area. The reduction of the dimension means a huge reduction of computation time,
allowing the simulation of multi-scale systems within one model.

The interaction forces between particles depend on the relative distance between
particles and in the case of lubricated contacts on the relative velocity as
well. Simulations of contacts between randomly rough surfaces also require a
conversion of the surface roughness power spectra form two-dimensional to one-
dimensional.

A numerical implementation of the described model is currently used to study
the chemical–mechanical polishing [3]. Extensive studies with three-dimensional
and one-dimensional models are in progress that will give further information on
the quality of the one-dimensional model.
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