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Abstract

This paper introduces an improved approach to model contact interfaces of fixed
joints in finite element analysis (FEA) with regard to prediction of the vibra-
tion behaviour of built-up structures. The approach consists of two parts: (1) the
development of a suitable, new contact model which considers the most impor-
tant physical effects of wave propagation over the contact interface; and (2) the
implementation of the contact model in commercial finite element software. The
new model is based on the contact models of Hertz and Mindlin for the contact of a
single spherical asperity with an elastic plane. The Hertzian microscopic model for
normal contact is then generalized with a statistical approach for rough surfaces
introduced by Greenwood to a macroscopic normal contact model for engineer-
ing surfaces. To model the macroscopic tangential contact, a new model based on
Mindlins approach is introduced which accounts accurately for microslip effects
and considers the dependence of tangential contact behaviour on the normal pres-
sure. For implementing the contact model in FEA, a special isoparametric contact
element, the so-called zero thickness element, is programmed. The use of this ele-
ment compared with existing contact algorithms has some major advantages with
regard to the application of modelling the contact in fixed joints considered in this
paper. The introduced approach is verified by simulating the vibration behaviour
of a built-up structure and proving the prediction quality by comparing simulation
results with experimental data.
Keywords: contact mechanics, contact elements, joints, joint modelling, microslip,
contact damping, hysteresis model, evolution equation.
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1 Introduction

For lightly damped, linear members of a structure, very good estimates of eigenfre-
quencies, modal damping values, and corresponding mode shapes can be achieved
by Experimental Modal Analysis (EMA). Furthermore, by model updating of finite
element models of members, very good predictions of the vibration behaviour up
to high frequencies are possible [1].

If we now assemble single members into a built-up structure, prediction of the
structural vibration behaviour can be quite involved, even though the behaviour of
all single members is well-known [2]. This is due to the fact that the mechanical
contact at joint interfaces is usually not modelled sufficiently. Effects like uneven
contact pressure distributions over the contact area, microslip damping and gaping
of contact regions remain unconsidered but these effects can have a major influence
on the structural vibration behaviour.

To account for these effects, this paper shows that the roughness of contacting
surfaces (figure 1) has to be considered at least integrally to predict the vibration
behaviour of built-up structures meaning resonance frequencies, mode shapes and
modal damping values.

Figure 1: Although the contact area seems to be conforming on a macroscopic
scale, the true contact consists of a multitude of non-conforming asperity
contacts on a microscopic scale.

2 Contact mechanics

2.1 Normal contact of rough surfaces

For describing the normal contact of two rough surfaces, the contact model of
Greenwood and Williamson is employed. This model is based on the Hertzian
normal contact model for two elastic spheres [3] which is used to model the contact
of single asperities. The Hertzian model leads to a circular contact region with
radius rA and a radial normal pressure distribution

pN(r) = pmax

√
1 − r2

rA
2

with pmax =
3FN

2πrA
2

(1)
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caused by normal force FN. The approach αN of facing points in the spheres which
are far away from the contact region is given by

αN =
rA

2

r∗
=

(
9FN

2

16r∗E∗2

)1/3

. (2)

Based on this, Greenwood and Williamson [4] developed a model to describe the
contact of a rough elastic with a planar rigid surface, see figure 2. The height
distribution φ(z) of the rough surface is determined by the height distributions of
the two real rough surfaces in contact. The height distribution φ(z) and also the

�

�

rigid surface

rough surface

��

Figure 2: Contact of a planar rigid surface with a rough elastic surface. The dashed
line represents the reference plane of the rough surface defined by the
arithmetic mean value of the heights. gN is the positive distance in nor-
mal direction between the rigid plane and the reference plane.

cumulative height distribution Φ(z) (Abbott-curve) can then be approximated by
different distribution functions. For simplicity an exponential distribution function
is used here:

φExp(z) = σ−1e−(z/σ) and ΦExp(z) =
[
−e−(z̃/σ)

]∞
z

= e−(z/σ). (3)

This type of distribution is usually sufficient to describe the uppermost 25% of a
measured cumulative height distribution [4] and leads to a relatively simple math-
ematical model. With this we get relations for the true area of contact AR and the
normal force FN depending on the normal distance gN of the two surfaces:

AR = πrAN

∫ ∞

gN

(z − gN)σ−1e−z/σdz = πrANσe−(gN/σ), (4)

FN =
4
3
NE∗rA

1/2

∫ ∞

gN

(z − gN)3/2σ−1e−z/σdz = π1/2NE∗rA
1/2σ3/2e−gN/σ,

(5)
where σ is the standard deviation of the height profile of the rough surface, N the
overall number of peaks and E∗ the average Young’s modulus.
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Normal pressure is obtained by dividing normal force by apparent area of con-
tact A0. By introducing new parameters the pressure can be expressed by [5]

pN = FN/A0 = pN0 e −λ(gN−gN0) λ = 1/σ > 0, (6)

where gN0 > 0 is the initial distance between the reference plane and the highest
peak of the rough surface and pN0 > 0 is the pressure value at initial contact
(gN = gN0). The slope of this curve is given by kN = −λ pN which corresponds
to the normal contact stiffness. The asumption of an exponential height distribution
leads to the interesting relation

pN ∼ AR with
AR

A0
= Φ(gN − gN0) = e −(gN−gN0)/σ . (7)

2.2 A new hysteresis model for tangential contact

The introduced model is a new hysteresis model defined by an evolution equa-
tion which is based on Mindlin’s approach for tangential contact of two spheres.
Mindlin assumes that – by applying a tangential force FT additionally to an acting
normal force FN on the spheres – contact area and normal pressure distribution
remain the same as without a tangential force. Therefore, both variables can be
described by Hertzian theory [3, chapter 7].

In the presliding or microslip regime (0 ≤ |FT| < µFN) the relation between
tangential force FT and relative tangential displacement gT is defined by

|FT| = µFN

[
1 − (1 − |gT|/gmax

T )3/2
]

with gmax
T =

3
2kT0

µFN, (8)

where kT0 is the slope of the microslip curve at the origin and gT is the relative
tangential displacement of facing points in the spheres which are far away from
the contact region. If |FT| exceeds µFN the whole contact area is slipping under
the condition of Coulomb’s law.

By differentiating equation (8) with respect to time where FN is held constant
we get the evolution equation

ḞT = kT0 ġT

(
1 − |gT|

gmax
T

)1/2

= kT0 ġT

(
1 − |FT|

µFN

)1/3

. (9)

This equation can be generalized by introducing an arbitrary exponent n which
can be used to adapt the curve to measured data, see figure 3:

ḞT = kT0 ġT

(
1 − |FT|

µFN

)n

for 0 ≤ |FT| < µFN, n ∈ (0, 1). (10)

The slope of this curve is given by kT = dFT/dgT = ḞT/ġT which corre-
sponds to the tangential contact stiffness. This evolution equation is valid for
increasing tangential loading. For decreasing |FT| the relation between tangen-
tial force and tangential relative displacement is assumed to follow a linear elastic
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Figure 3: Hysteresis curve defined by equation (10) with different exponents n.

law, ḞT = kT0 ġT. The dissipated energy per cycle for an oscillating tangential
force of constant amplitude F̂T and corresponding displacement amplitude ĝT is
given by

WD =
2µ2FN

2

kT0

{
3

2

ĝT

gmax
T

+
3

2

1 − n

2 − n

[(
1 − ĝT

gmax
T

)(2−n)/(1−n)

− 1

]

−1

2

[
1 −
(

1 − ĝT

gmax
T

)3/2
]2}

(11)

if the force amplitude is less than µFN. Otherwise, equation (11) has to be evalu-
ated for ĝT = gmax

T and, additionally, the energy dissipated by Coulomb friction
has to be considered:

WD =
2µ2FN

2

kT0

[
n(3 − n)

2(2 − 3n + n2)
+

3

2

(
ĝT

gmax
T

− 1

)]
. (12)

3 Implementation of the contact model in FEA

The concept of zero thickness elements goes back to Goodman et al. [6] and
is discussed in detail in Hohberg [7]. A zero thickness element is depicted in
figure 4. The element consists of two four node quadrilateral elements which face
each other. In each quadrilateral element, the three-dimensional displacement field
{u} = [u v w]T is approximated by




u

v

w


 =


 h1 [I ] h2 [I ] h3 [I ] h4 [I ]






{u1}
{u2}
{u3}
{u4}




= [H ] {u}nodal, (13)
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where {ui} = [ui vi wi]T is the displacement vector of node i and hi are the
bilinear shape functions

h1(ξ, η) = 1
4 (1 − ξ) (1 − η) h3(ξ, η) = 1

4 (1 + ξ) (1 − η)
h2(ξ, η) = 1

4 (1 − ξ) (1 + η) h4(ξ, η) = 1
4 (1 + ξ) (1 + η)

(14)

formulated in the natural coordinates ξ, η of the element [8]. The matrix [H ] con-
tains the shape functions and [I] is a 3 × 3 unit matrix. The choice of a natural
coordinate system simplifies numerical integration of the element matrices.

Distinguishing between top and bottom quadrilateral and assuming that each
quadrilateral is connected to the surface of the finite element mesh of one contact-
ing body, we denote the corresponding displacement fields of the elements as

{u}bottom = [H(ξ, η)] {u}bottom
nodal {u}top = [H(ξ, η)] {u}top

nodal. (15)

Since these elements are only two-dimensional, the traction vector in each element
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Figure 4: 8-node zero thickness element consisting of two 4-node quadrilateral ele-
ments which are connected to the surfaces of the contacting bodies.

describes the interface stresses

{t}bottom =




tTx

tTy

tN




bottom

{t}top =




tTx

tTy

tN




top

(16)

and with this we can state the virtual internal work for each quadrilateral

δW bottom
I =

∫ �1

0

∫ �2

0

δ{u}bottom T {t}bottom dx dy (17)

δW top
I =

∫ �1

0

∫ �2

0

δ{u}top T {t}top dx dy. (18)
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In contact mechanics, one is interested in the relative displacement field {g} of
the contacting surfaces. This is expressed for zero thickness elements through the
relative displacement between the top and the bottom quadrilateral,

{g} = {u}top − {u}bottom = [H(ξ, η)] ({u}top
nodal − {u}bottom

nodal ). (19)

Furthermore, we know from Newton’s third law that the traction vectors of the
elements in contact must be equal in magnitude and opposite in direction,

{t} = {t}top = −{t}bottom. (20)

We can now implement contact laws as incremented and linearized constitutive
relations [9] between contact tractions and the relative displacement field,

∆{t} =
[

∂ {t}
∂ {g}

]
t+∆t{g}(j−1)

∆{g} = t+∆t[C](j−1)
Tangential ∆{g}. (21)

A description of different contact laws can be found in Gaul and Nitsche [10].
The virtual work of the contact tractions is given by the summation of the virtual

internal work for each element, as given in equation (17) and equation (18):

δWC = δW top
I + δW bottom

I =
∫ �1

0

∫ �2

0

δ{g}T {t} dx dy. (22)

Implementing the contact law in the virtual work expression yields the tangential
contact stiffness matrix for a relative displacement quadrilateral element,

[K]Tangential =
∫ �1

0

∫ �2

0

[H(ξ, η)]T t+∆t[C](j−1)
Tangential [H(ξ, η)] dx dy . (23)

These integrals are evaluated by applying the isoparametric concept and using
Gaussian quadrature scheme [8]. The full stiffness matrix for the eight node zero
thickness element is composed of the stiffness matrix of the quadrilateral element

[K] =

[
[K]Tangential −[K]Tangential

−[K]Tangential [K]Tangential

]
. (24)

The stiffness matrix [K] is 12-times singular due to its composition, thereby caus-
ing 12 zero-energy modes. A zero-energy mode, or so-called hourglass mode,
is a displacement mode that does not correspond to a rigid body motion, and it
produces zero strain energy [8]. As zero thickness elements are always clamped
between continuum elements, all 12 zero-energy modes are suppressed.

For applications of zero thickness elements in geomechanics, see, e.g., Beer [11]
and for applications in model update procedures see Ahmadian et al. [12].
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Figure 5: Airbag control unit generation 9 (Robert Bosch GmbH). Source:
http://www.bosch-presse.de/TBWebDB/bosch-pbj/de-DE/start.cfm

⇒

Figure 6: Exploded view of a control unit (left) and simplified test structure model
(right) consisting of three simple aluminium parts connected by four
bolts with nuts for investigating especially the influence of the contact
region on the vibration behaviour.

4 Application to a structure with bolted joints

The contact model implemented in the presented zero thickness elements is applied
to model the joint interfaces of a simplified control unit and thus predict the vibra-
tion behaviour. The simplified structure is depicted on the right of figure 6.

The linear elastic material parameters of the aluminium parts are experimentally
determined to minimize errors in the vibration simulation. The simulation itself
consists of two steps. In a first preloading step the bolts and nuts are tightened
causing a non-homogeneous contact pressure distribution in the contact interface
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which is depicted in figures 7 and 8 and by it a non-homogeneous contact stiffness
distribution. Next, following the experimental approach, the impulse response of
the structure is simulated and resonance frequencies and modal damping values
are determined by modal analysis of the simulated impulse responses at different
locations of the finite element mesh.
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Figure 7: Normal pressure distribution pN in the contact interface between upper
cover and plate.

Figure 8: Gaping of the contact interfaces after applying the bolt load.

4.1 Conclusion

Table 1 compares simulated and measured results. Obviously, the new contact
model accurately predicts the measured behaviour of this structure.
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Table 1: Comparison of resonance frequencies and modal damping values up to
2 kHz determined by measuring the impulse response and following
Experimental Modal Analysis (left) and by simulation of the impulse
response, Fourier transform and following Modal Analysis (right).

Measured Simulated

Mode 1 889 Hz 1.2 % 877 Hz 0.9 %

Mode 2 1101 Hz 0.8 % 1113 Hz 0.6 %

Mode 3 1349 Hz 1.1 % 1366 Hz 0.7 %

Mode 4 1424 Hz 0.9 % 1386 Hz 0.7 %

Mode 5 1521 Hz 0.7 % 1537 Hz 0.5 %

Mode 6 1645 Hz 0.6 % 1660 Hz 0.5 %

Mode 7 1766 Hz 0.7 % 1753 Hz 0.6 %

Mode 8 1960 Hz 0.6 % 1982 Hz 0.4 %
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