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Abstract 

An analytical solution of adhesion contact for a rigid sinusoidal surface on a 
semi-infinite elastic body is presented. The solution for an equilibrium condition 
of the system for a combination of the work of Johnson [International Journal of 
Solids and Structures, 32(3–4), pp. 423–430, 1995] and Zilberman and Persson 
[Solid State Communications, 123(3–4), pp. 173–177, 2002; Journal of Chemical 
Physics, 118(14), pp. 6473–6480, 2003] under zero external pressure is obtained. 
The interfacial term of the total energy is calculated by considering the curvature 
of the contact area following the approach of Zilberman and Persson rather than 
the straight line of the contact area as Johnson. Our results agree with both the 
analytical result of Johnson for a slightly wavy surface and the numerical results 
of Zilberman and Persson for a largely wavy surface at the limitations of their 
assumptions. The equilibrium contact width is clearly expressed and the effect of 
the surface roughness is discussed.  
Keywords: analytical solution, equilibrium condition, critical work of adhesion, 
sinusoidal surface, semi-infinite elastic body. 

1 Introduction 

The contact problems of a semi-infinite elastic body with a flat or a wavy surface 
have been investigated by some researchers. Johnson et al. [1] investigated a 
smooth contact problem of an elastic body with slightly wavy surface in contact 
with a rigid body with flat surface. They obtained a relation between the applied 
external pressure and the amplitude of roughness.  
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     Johnson [2] extended his work [1] by considering the adhesion effect, and 
solved it analytically. However, his solution can be applied only to wavy contact 
with adhesion with small amplitude roughness.  

Zilberman and Persson [3, 4] investigated an adhesion contact of a largely 
wavy surface and solved it numerically. They considered the curvature rather 
than the straight line of the contact area in the calculation of interfacial term of 
the total energy. However, a local minimum as well as a local maximum of the 
system cannot be determined directly from their solution.    

Considering the limitations of the work of Johnson [2] and Zilberman and 
Persson [3, 4], the present work is intended to obtain an analytical solution for an 
equilibrium condition of the system for combination of their works under zero 
external pressure. In addition, the effect of the thermodynamic work of adhesion 
as well as the effect of the surface roughness on the system is investigated.  

2 Analytical method 

2.1 Pressure distribution and displacement on the surface 

A semi-infinite elastic body with initially flat surface subjected to a sinusoidal 
rigid surface is considered. It is assumed that the elastic body is homogeneous 
and isotropic, and the frictionless contact presents at the interface.   

The surface pressure distribution and the surface displacement of the 
adhesion contact are the resultant of the surface pressure distribution and the 
surface displacement of two adhesionless contacts. The first is a semi-infinite 
elastic body subjected to a sinusoidal rigid surface while the second is a semi-
infinite elastic body pulled by a flat rigid surface. In fact, the second 
adhesionless contact can be represented as a crack problem [5]. In the present 
work, the surface pressure distributions and surface displacements of 
Westergaard [6] and Koiter [7] are used.  

The net surface pressure distribution, )(xp , upon the elastic body within the 
contact region is given by [5], i.e. )()()( xpxpxp cs += , where )(xp s is the 
surface pressure distribution relates to the sinusoidal rigid surface, obtained by 
[6]  
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and )(xp c  is the surface pressure distribution relates to the flat rigid surface, 
obtained by [7] 
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where sp  is the mean pressure as in [6], cp  is the mean pressure as in [7], and 
a  is the semi-contact width.  

In the same manner as the net surface pressure distribution, )(xp , the net 
mean pressure is given by [2], i.e. cs ppp += . 

Johnson et al. [1] obtained an expression for the mean pressure, sp , in one 
period, i.e. ( ) ( )λπλπ ahEp o

s 2sin*= , where 
oh  and λ  are the amplitude of 

roughness and the wavelength of a sinusoidal rigid profile, respectively, and *E  
is the plane strain modulus of the elastic semi-infinite body.  

In the case of a rigid body in contact with an elastic body, the elastic 
modulus, *E  is given by 21* υ−= EE , where E  and υ  are Young’s modulus 
and Poisson’s ratio of the elastic body, respectively.  

 

Figure 1: Geometry of the contact problem of a rigid body in contact with a 
semi-infinite elastic body. 

The surface profile of the rigid body is expressed by ( )λπx hxz o 2cos)( =  (see 
Fig. 1).  

The net surface displacement on the elastic body within the contact region is 
given by [3], [4], i.e. )()()( xuxuxu c

z
s
zz += , where )(xus

z  is the surface 
displacement relates to the sinusoidal rigid surface, obtained by [6]  
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and )(xuc

z is the surface displacement relates to the flat rigid surface, obtained by 
[7] 
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Here, )(xuc

z  within contact region is not zero, which is different from [3, 4]. 
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2.2 Total energy of the present system 

2.2.1 Elastic term in the total energy 
The total free energy of the present system consists of the elastic term and the 
interfacial term. The elastic term is induced by the applied surface pressure 
distributions within the contact region. The total pressure distribution consists of 
Eqs. (1) and (2). The total elastic energy term,

totalEU , over the whole semi-
infinite elastic body in one period is obtained by 
 

∫=
λA

ztotalE dAxuxpU )()(
2
1 ,                                         (5) 

 
where the parameters 

λA  is the nominal contact area (i.e. 2λ ). With Eqs. (1)-(4), 
Eq. (5) gives 
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Since we have no external pressure in the present system, the net mean pressure 
is equal to zero ( p =0 ),  Eq. (6) can be represented as   
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2.2.2 Interfacial term in the total energy  
The interfacial term, IU (i.e. energy change from the surface to the interface 
within the contact region [8]), of the system in one period is determined by 
considering the curvature of the rigid surface, given by λγλ sAU I ∆−= , where 

λA  
is the same parameter as in Eq. (5), and γ∆  is the thermodynamic work of 
adhesion, given by 

1221 γγγγ −+=∆ , where
1γ  and 

2γ  are the surface energies of 
the rigid body and the elastic body, respectively, and 

12γ  is their interfacial 
energy, and s  is the surface length of the contact area. Considering the curvature 
of the surface roughness, s  can be expressed by  
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The interfacial term, IU , is 
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Since Eq. (9) contains an elliptic integral of the second kind, consequently it is 
calculated by numerical methods.  

2.2.3 Total energy of the system 
The total energy of the system,

totalU , (i.e. Gibbs free energy) in one period is 
given by  
 

ItotalEtotal UUU += .                                        (10) 
 
Substituting Eqs. (7) and (9) into Eq. (10) gives the total energy of the system in 
one period, i.e.   
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Eq. (11) can be rearranged to 
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where γ∆  is the normalized thermodynamic work of adhesion, given by 

( )λπγγ 2/* 22
ohE∆=∆ . 

2.3 Equilibrium of the system 

The equilibrium of the system is given by minimizing the total energy, 
totalU , 

with respect to the semi-contact width, a . Therefore, the equilibrium contact 
width can be obtained by  
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Eq. (13) can be represented by the normalized work of adhesion, γ∆  i.e. 
 















+

















=∆

λ
π

λ
π

λ
π

λ
π

γ
ah

aa

o 2sin21

cossin

2
2

3
 .                                  (14) 

 
This equation presents a necessary condition for equilibrium of the system.  

3 Results and discussion 

We have confirmed our results with the total energy calculated by Zilberman and 
Persson’s equation [4] and the equilibrium condition calculated by Johnson’s 
equation [2]. It is shown that our results conform to those of Zilberman and 
Persson and Johnson at the limitations of their assumptions. 

Figs. 2(a) and 2(b) are plotted by Eq. (12) with the amplitude of the 
roughness, λoh  = 0.5 and the wavelength, λ = 50 Å, respectively. Fig. 2(a) 
shows the relation between the normalized total energy, )/*/( 2 λλ ototal hEAU , and 
the normalized contact width, λa2  for a normalized work of adhesion, 1.0=∆γ . 
Fig. 2(b) shows the relation between the normalized total 
energy, )/*/( 2 λλ ototal hEAU , and the normalized contact width, λa2 , for several 
normalized work of adhesion, 

1γ∆ = 0.06, 
2γ∆ = 0.8, 

3γ∆ = 0.1, 
4γ∆ = 0.12, 

126.05 ≈∆γ  and 
6γ∆ = 0.14. It is shown that the normalized total energy 

decreases as the normalized work of adhesion increases.  
 In Fig. 2(a), it shows that the normalized total energy curve has a local 
minimum and a local maximum. This suggests that when the elastic body 
contacts to the rough rigid body, the normalized contact width immediately snap 
into the local minimum, point A. And, when the local maximum, point B is 
reached, the normalized contact width immediately snap into complete contact.  
In Fig. 2(b), each curve for γ∆ = 0.06 - 0.12 has a local minimum (i.e. points A1-
A4) and a local maximum (i.e. B1-B4), while the curve for 126.05 ≈∆γ  has a 
horizontal inflection (i.e. point C). On the other hand, the curve for 

6γ∆  = 0.14 
has no a horizontal inflection, neither local minimum nor local maximum. In the 
same manner with Fig. 2(a), this suggests that when the elastic body contacts to 
the rough rigid body, the normalized contact width immediately increases to the 
local minimum 126.05 <∆γ , while for 126.0≥∆γ  the normalized contact 
width immediately increases to the complete contact. The same manner can also 
be explained for 

6γ∆  = 0.14. All of the local minima are stable equilibrium 
points, whereas, all of the local maxima and the horizontal inflection are unstable 
points.  
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Figure 2: The relation between the normalized total energy and the 
normalized contact width. (a) curve is calculated for 1.0=∆γ  and 

5.0=λoh , (b) curves are calculated for 1.0=∆γ  and several λoh . 

     Fig. 3 is plotted by Eq. (14) for λoh  = 0.5. It shows the relation between the 
normalized work of adhesion, )2/*/( 22 λπγ ohE∆ , and the normalized contact 
width, λa2 . The curve of stable equilibrium points corresponds to the curve of 
local minima in the Fig. 2(b), while the curve of unstable points corresponds to 
the curve of local maxima. The critical normalized work of adhesion, critγ∆ , 
corresponds to the horizontal inflection point. In the same manner, points A1-A4,  
B1-B4 and C in Fig. 3 correspond to points A1-A4,  B1-B4 and C in Fig. 2(b). The 
contact width of the stable equilibrium points and the unstable points can be 
obtained from the curves in Fig. 3 for a given normalized work of adhesion. If 
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we could give such a normalized contact width larger than the curve of unstable 
points under zero external pressure condition, the normalized contact width 
immediately increases to snap into complete contact. 
 

Figure 3: The relation between the normalized work of adhesion and the 
normalized contact width. The equilibrium curve is plotted 
for 5.0=λoh  and several γ∆ . 

     Fig. 4 is plotted by Eq. (14) in the same manner as Fig. 3 for several λoh . In 
the case of the normalized amplitude of roughness is close to zero, (i.e. λoh  ≈ 
0), the present solution agrees with the analytical solution of Johnson [2] for 
slightly wavy surface. On the other hand, if the normalized amplitude of 
roughness is large enough, the solution agrees with the numerical solution of 
Zilbermann and Persson [3,4] for largely wavy surface. The critical work of 
adhesion, critγ∆ , for each λoh  is given in Fig. 4. If a value of the normalized 
work of adhesion is larger than the critγ∆ , the normalized contact width 
immediately increases to snap into complete contact directly after initial contact 
because there is no equilibrium point within the system.  

4 Conclusions 

An analytical solution of adhesion contact for a rigid sinusoidal surface on a 
semi-infinite elastic body is presented. The solution for an equilibrium condition 
of the system for combination of Johnson’s and Zilberman-Persson’s works 
under zero external pressure is obtained. The interfacial term of the total energy 
is calculated by considering the curvature of the contact area in the same way as 
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Zilberman and Persson. Our results agree with both the analytical result of 
Johnson and the numerical results of Zilbermann and Persson at the limitations 
of their assumptions. The equilibrium contact width is clearly expressed and the 
effect of the surface roughness is discussed.  
 

Figure 4: The relation between the normalized work of adhesion and the 
normalized contact width. The 

critγ∆  are plotted for several λoh . 
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