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Abstract 

In this work an analytical approach for analysis of surface treatment by a laser 
beam is presented. A thermal model of interaction for the case of cylindrical 
geometry of the material and asymmetric distribution of the laser beam intensity 
are used. An analytical procedure is developed to analyze the temporal and the 
spatial distribution of the temperature field inside the bulk of material. This kind 
of consideration is of practical interest in cases where the excitation by the laser 
beam is not symmetric in respect to its position or shape, e.g. multi-mode 
working regimes or asymmetrical distribution of the laser beam intensity. The 
heating effects were considered in the temperature range up to the melting point. 
The thermal and the optical parameters of the material were assumed to be 
independent of the temperature and were given constant values in the 
temperature range of interest. This approach makes use of the Laplace transform, 
in order to eliminate dependence on time. The Fourier method of variable 
separation was used to obtain the temperature field distribution in the Laplace 
transform domain.  
Keywords:  surface treatment, laser, thermal model, multi-mode. 

1 Introduction 

In a general case the analysis of the laser-material interaction, important for 
practical applications, is very complex and includes analysis of different physical 
processes such as material removal, material melting, thermal stresses, shock 
wave, etc. This prevents successful construction of a general analytical solution 
and different numerical procedures have been used in the past [1]. This work is 
restricted only to analysis of heating effects of the laser-material interaction.      
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In many practical applications of laser beams the finite dimensions of the bulk 
material and the asymmetric distribution of the laser beam intensity has to be 
taken into account. The presented analytical approach enables consideration of 
the heating effects of interactions for the different and complicated laser-beam 
distributions for cases without axial symmetry. The temperature field distribution 
in this way can be analyzed for 3D cylindrical geometry allowing monitoring of 
the time evolution of the temperature distribution. For the arbitrary time 
dependence, spatial distribution and position of the incoming laser beam 
intensity the same numerical data could be used, saving in this way memory and 
CPU time. By using Duhamel’s principle [2] the temperature distribution is 
evaluated by using the convolution integral. 
     This kind of analyses could be important in many technical applications of 
laser beams in technology and science [3-5] as well as in the case of laser-
material interaction in the multi-mode working regime. 
     For the multi-mode working regime as well as for the complex laser beam 
intensity distribution superposition principle could be used. In case of the linear 
governing partial differential equation (PDE) the final solution could be 
presented as superposition or sum of the PDE solutions belonging to different 
parts of the incident loads, i.e. in our cases the incoming laser beam intensity. 

2 Mathematical model 

Heating of a homogenous cylinder, with a finite or infinite length, by an incident 
laser beam on the upper surface of the specimen is considered (Fig. 1). The shape 
of the cross-section, the position of the laser beam on the upper side of the 
specimen, the distribution and the time dependence of the laser beam intensity 
can be arbitrary. In the numerical examples presented in this paper, because of 
simplicity and still without losing generality, only a top head laser beam profile 
with circular cross section is considered. It was assumed that the laser beam 
intensity could be approximated by a product of two functions of spatial and time 
coordinates: ( )rq and ( )tφ , respectively [5, 8]. 
     Only the heating effects due to the interaction were considered. The laser-
material interaction was modeled by the equivalent thermal flux on the upper 
side of the specimen. All thermal and optical parameters of the material are 
considered to be constant and temperature independent, yielding a linear thermal 
conduction problem. The geometry of the considered problem was represented in 
a cylindrical reference system. 
     The temperature distribution inside the bulk material was considered and the 
convective thermal losses from the lower and the axial surface of the material 
were taken into account, while the thermal losses from the upper surface of the 
specimen are neglected. The radiative losses have important contribution to the 
whole thermal losses at the very high temperatures [8]. Thus, for low 
temperature of the specimen, the radiative heat losses are smaller than convective 
ones and could be neglected [8]. Beside this, if the absorption length, for 
considered laser beam and material, is very short, related to size of the heating 
affected zone (HAZ), it could be considered that laser beam is absorbed by the 
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surface of the specimen. This is the case for many materials of interest, thus the 
laser-material interaction could be approximated by the equivalent surface 
thermal source [8]. Constant and temperature independent value of the 
coefficient of thermal conductivity were assumed. 

Figure 1: The geometry of considered problem and coordinate system used. 

     Once these approximations are applied, the heating of the considered 
cylindrical specimen can be modeled by the following PDE and the 
corresponding boundary (BC) and initial (IC) conditions [5, 9]: 
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where: λ  is the coefficient of thermal conductivity, which is considered to be 
constant and temperature independent, cα λ ρ= ⋅  is the thermal diffusivity, c is 
the specific heath, ρ is the material density, hc is the heath transfer coefficient 
[10], A is the absorption coefficient of the laser radiation by the material [11], R, 
h are the radius and length of the specimen, respectively, and T is the 
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temperature difference in the interior domain relative to the ambient one. The 
equation (1b) represents the homogenous BCs while the equation (1c) describes 
the IC.  
     The Laplace transform approach was used to eliminate the time dependence 
and to convert the original problem to the equivalent problem in the Laplace 
transform domain [12]. Fourier’s method of variable separation was used in 
order to transform the original PDE into three ordinary differential equations as 
follows [12]: 
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where µ  and m are constants, s is a complex parameter, and the asterisk in the 
superscript denotes functions in Laplace’s transform domain. The particular 
solutions of the governing PDE can be expressed in the following form in the 
Laplace transform domain [9, 13, 14]: 
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where m  is integer, ( ) ( )2T T mθ θ π= + , because of the continuity condition, 

mJ  are Bessel functions of the m-th kind, mnµ  are positive roots of the 
characteristic transcendent equations which describe the BC on the axial 
boundary surface of the specimen, given by the next relation: 
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to the boundary conditions on the lower surface of the specimen and according to 
previous work [9], ( )*
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If the laser beam have rounded cross-section and top head profile, because of 
symmetry the particular solutions given by (2) have to be odd functions of the 
angular coordinate θ  and accordingly 1mK  and 2mK  in (3) can be 

1 21 and 0m mK K= = .  
     As the particular solutions, for positive values of the constants mnµ , are 
linearly independent, the solution in the Laplace transform domain could be 
evaluated by the series of the particular ones: 
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The response to Dirac’s pulse induction in time domain ( )T r,z, ,tδ θ  was 
obtained using inverse Laplace’s transformation and Bromwich integral, and it 
can be expressed in the following form: 
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where p is the positive real parameter; L-1 denotes the inverse Laplace-s 
transformation; mnjτ  and ( )jE z  are given by next relations: 
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For arbitrary time dependence of the laser beam intensity, the temperature 
distribution inside the specimen could be evaluated by a convolution integral as 
[9, 12]: 
 

( ) ( ) ( )
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3 Numerical examples 

In this section according to the above considerations numerical examples are 
presented for some characteristic cases. A cylindrical Al specimen is considered 
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and the following characteristic parameters were assumed: [ ]240 W K mλ = ⋅ ; 
2700ρ = [kg/m3]; c = 1021.71 [J/kg K]; hc = 10 [W/Km2]; A = 0.64; h=5[mm]; 

R = 7[mm]. 
     In Figs. 2 the contour lines for the temperature field on the upper surface (X–
Y plane) of the specimen are presented. The laser beam with top head profile 
was assumed to have the following characteristics: power = 500W, radius = 
1mm, time duration = 1s, coordinates of the laser beam center: θ0 = 0; r1 = 4mm. 
 

 
Figure 2: Contour plot of temperature on the upper surface of the specimen. 

The laser beam properties were: power = 500W, radius = 1mm, 
time duration = 1s, position θ0 = 0; r1 = 4mm. 

     In Fig. 3 the contour plot of the temperature field in x–z plane is presented. 
The laser beam and the specimen parameters are the same as in the previous 
case. 
     In Fig. 4 the contour plot of the temperature difference on the upper surface 
(x–y plane) is presented, for the case of two laser beams with the same top head 
profiles. The laser beams have the following properties: 
power 1 2500W 500WP ; P ;= =  radii: 01 02 0 5 mm;r r .= =  time duration 1s, 
positions of the laser beams center: r1 = 2mm; θ01 = 0 rad; r2=3.2 mm; θ02 = 0 
rad.  
     In Fig. 5 the contour plot in the x–z plane, for the same case, was presented. 
The dimensions and assumed physical properties of the specimen were the same 
as in the previous cases. 
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Figure 3: Contour plot in the x–z plane, laser beam properties: power=500W, 

radius=1mm, time duration=1s, position 0 10 4mm; rθ = = . 

 
Figure 4: Contour plot of temperature on the upper surface of the specimen, 

for two incident laser beams, positions of the laser beams: r1 = 
2mm; θ01 = 0 rad; r2=3.2 mm; θ02 = 0 rad. 
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Figure 5: Contour plot in the x–z plane, for two incident laser beams, 

positions of the laser beams: 1 2 mm;r =  01 0 rad;θ =  

2 023.2 mm; 0 radr θ= = . 

4 Conclusions 

An analytical approach for solving 3D problems of material heating with laser 
beam was considered. The heating process was modeled using the linear non-
stationary heat equation applied to cylindrical geometry. The spatial and 
temporal distributions of the temperature fields were considered. Using the 
method of variable separations and the Laplace transformation, the governing 
PDE with corresponding BC and IC was solved and the temperature field 
distributions were presented in closed form. 
     By using appropriate set of orthogonal functions, the numerical procedure 
was made more effective, producing saving in CPU time. The obtained 
numerical results improved as the number of terms used in the series of the 
solution increased. 
     Numerical examples were presented for the Al specimen with different 
characteristic positions of the laser beam. The convolution integral and 
Duhamel’s principle can be used to represent arbitrary time dependence of the 
laser beam intensity. 
     For complex profiles of the laser beam the superposition principle was used. 
The temperature field distribution was considered and presented for two different 
laser beams targeting the same specimen. 
     The presented analytical solutions offers further advantage relative to direct 
monitoring since measurement of the temperature field distribution inside the 
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bulk of the material is difficult to be arranged and can be usually performed in a 
restricted number of points. 
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