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Abstract 

Water distribution systems (WDS) are critical infrastructures that should be 
designed to work properly in different conditions. The design and management of 
WDS should take into account the uncertain nature of some system parameters 
affecting the overall reliability of these infrastructures. In this context, water 
demand represents the major source of uncertainty. Thus, uncertain demand 
should be either modelled as a stochastic process or characterized using statistical 
tools. In this paper, we extend to the 3rd and 4th order moments the analytical 
equations (namely scaling laws) expressing the dependency of the statistical 
moments of demand signals on the sampling time resolution and on the number of 
served users. Also, we describe how the probability density function (pdf) of the 
demand signal changes with both the increase of the user’s number and the 
sampling rate variation. With this aim, synthetic data and real indoor water 
demand data are used. The scaling laws of the water demand statistics are a 
powerful tool which allows us to incorporate the demand uncertainty in the 
optimization models for a sustainable management of WDS. Specifically, in 
the stochastic/robust optimization, solutions close to the optimum in different 
working conditions should be considered. Obviously, the results of these 
optimization models are strongly dependent on the conditions that are taken into 
consideration (i.e. the scenarios). Among the approaches for the definition of 
demand scenarios and their probability-weight of occurrence, the moment- 
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matching method is based on matching a set of statistical properties, e.g. moments 
from the 1st (mean) to the 4th (kurtosis) order.  
Keywords: water distribution systems, water demand, scaling laws, scenario 
generation, stochastic/robust optimization. 

1 Introduction 

The conventional modeling of water distribution systems, WDS, is usually based 
on a deterministic approach, not merely with regard to the geometrical and 
hydraulic features, but also with respect to the demand loadings. Further, it must 
be taken into account that many data, e.g. roughness, diameter and length of pipes, 
exact form and location of junction and valves, etc., are not perfectly known. 
     At the same time, great effort has been invested by researchers in the 
development and improvement of optimization models for the design and 
management of WDS, as well as techniques to solve these models. However, these 
optimization models are usually based on the assumption of perfectly defined 
working conditions, leading to solutions which are optimal for the considered 
inputs, but may be unreliable if reality turns out to be different. 
     Among all the cited factors, the variability of the demand represents the major 
source of uncertainty (Pierleoni et al. [1], Di Francesco et al. [2]). Uncertainty 
inherent to water demand propagates into uncertain pressure heads and pipe flows, 
affecting the overall reliability of any kind of model describing a WDS. 
   With this aim, after verifying nontrivial scaling of the variance of real 
consumption data with spatial aggregation, Magini et al. [3] developed simple 
scaling laws relating the mean, variance, and covariance of water consumption 
series with the number of aggregated users. The development of the scaling laws 
relies on the assumption that water flowing in a meter, corresponding to the water 
consumption of a unit user, is a random variable or realization of a stationary 
stochastic process. The expected value for the mean consumption was found to 
increase linearly and the expected value for the variance and lag1 covariance of 
consumption was found to increase accordingly to an exponent between 1 and 2. 
Following up this work, Vertommen et al. [4] theoretically derived the scaling 
laws for the cross-covariance, and cross-correlation coefficient and showed that 
the exponent of the variance scaling law depends on the spatial correlation 
between consumptions. Statistical correlation between residential water demands 
was already proven to be not negligible and to affect the hydraulic performance of 
a WDS (Filion et al. [5]). The probabilistic description of the water demand, 
through the definition of the scaling laws, provides the ability to insert the demand 
uncertainty in the modelling of WDS.  
     In general, the scaling laws are useful both for descriptive and decision models, 
thus, they can be a powerful tool not only in stochastic programming models but 
also in models that want predict how a WDS, which either already exists or will 
be constructed, will behave. 
     In particular, stochastic optimization methods (stochastic programming, robust 
optimization) tackles the issue of uncertainty in water demand by considering 
different scenarios and by obtaining a solution which stays close to the optimum 
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for all of them (da Cunha and de Sousa [6]). The outcome of stochastic 
optimization depends on the scenarios that are considered and on their probability 
of occurrence. Different possible scenarios, which include various aspects, such 
as peak flows, fire conditions at certain nodes, or pipe breakage, and the 
corresponding probabilities of occurrence could be obtained by consulting a panel 
of experts. However, this solution can have strong limitations in such a 
mathematically sensitive problem, and can lead to arbitrary solutions. 
     In response to these considerations, we propose not arbitrary approaches for 
the establishment of different demand scenarios and the mathematical 
determination of their probability/weight of occurrence. Therefore, water demand 
will be modelled as a stochastic variable using the scaling laws for the statistical 
moments and cross-correlation of nodal demands. Also different marginal pdf 
functions will be considered at each node depending on the number of nodal users. 
     In stochastic optimization, it is necessary to transform the multivariate 
probability distributions in multiple scenarios, representative of situations of risk 
against which the performance of the system is evaluated. This process is known 
as precisely scenario generation (Kaut and Wallace [7]) and different methods for 
generating scenarios exist (Dupacová et al. [8] and Mitra [9]).  
     Most of these methods try to generate scenarios that match a given set of 
specifications for their marginal distributions and the dependence between them, 
which is almost always specified through the correlation (or variance-covariance) 
matrix. At this aim, in this work the scaling laws for the 1st and 2nd order moments 
are extended to the 3rd order moment (skewness) and 4th order moment (kurtosis) 
analyzing multi-year series of experimental data of water consumption. Moreover, 
the probability density functions, pdf, at different spatial and temporal aggregation 
level are derived. 

2 Skewness and kurtosis 

Dealing with the demand uncertainty when modelling WDS, requires not only a 
complete statistical characterization of demand variability, but also the 
determination of the correlation between the different users and groups of users. 
The natural variability of demand can be expressed using probability density 
functions, pdf. A pdf is characterized by its shape (e.g. normal, exponential, 
gamma, etc.) and by specific parameters like the population mean and variance. 
Thus, in order to represent uncertain water demand using a pdf, it is necessary to 
identify and estimate the values of these parameters. The consideration of different 
spatial and temporal aggregation levels induces changes in the pdf parameters, 
often leading to a reduction of the uncertainty. The auto-correlation and cross-
correlation that characterize the water demand signals affect the extent to which 
the pdf parameters vary, and can introduce an additional sensitivity to the specific 
period of observation in question.  
     In order to understand the effects of spatial aggregation and sampling intervals 
on the statistical properties of demand, it is possible to develop analytical 
expressions for the moments (mean, variance, cross-covariance and cross-
correlation coefficient) of demand time series, at a fixed time sampling frequency 
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 of ݊ aggregated users as a function of the moments of the single-user series ,ݐ∆
sampled in the observation period T. These expressions are referred to as Scaling 
Laws, and can be expressed as  
 

௧,்ሺ݊ሻ൧∆݉ൣܧ ൌ ௧,்൧∆݉ൣܧ ∙ ݊ఈ ∙ ݂ሺ∆ݐ, ܶሻ (1)

where ݉ൣܧ∆௧,்ሺ݊ሻ൧ is the expected value of the moment ݉ for ݊ users for the time 
interval ܶ; ݉ൣܧ∆௧,்൧ is the expected value of the moment ݉ for the single-user for 
the same time interval; ߙ is the exponent of the scaling law; and ݂ሺ∆ݐ, ܶሻ is a 
function that expresses the influence of both sampling rate and observation period. 
     The development of the scaling laws is based on the assumption that the 
demand can be described by a homogeneous and stationary process, which implies 
that the ݊ aggregated users are of the same type (residential, commercial, 
industrial, etc.), and that the statistical properties of demand, mean and variance, 
can be assumed constant in time. Neglecting the bias that can arise when using 
small demand series (e.g. due to short observation periods; Vertommen et al. [10]) 
the expected value for the 2nd order moment, variance, can be expressed as: 

ଶሿߪሾܧ ൌ  ൈۻ ൈ ் (2)

where ܧሾߪଶሿ	is the expected variance of n aggregated demands, 1 is the all-ones 
vector of size (1,n) and M2 the (n,n) covariance matrix of the n single-user demand 
signals. From eqn. (2), being the generic term of M2, ܿ, ൌ  , isߩ , whereߪߪ,ߩ
the Pearson correlation coefficient, Magini et al. [3] and Vertommen et al. [4] 
showed that the exponent α of the scaling law for the variance varies between α = 1 
(uncorrelated signals) and α = 2 (perfectly correlated signals).  
     Following the same procedure used in Magini et al. [3] and Vertommen et al. 
[4] to derive eqn. (2), similar equations can be obtained for the third and fourth 
moments, that are: 

ሾ݉ܧ
ଷሿ ൌ  ൈۻ ൈ ሺࢀ ⊗ ࢀሻ (3)

ሾ݉ܧ
ସሿ ൌ  ൈۻ ൈ ሺࢀ ⊗ ࢀ ⊗ ࢀሻ (4)

where ܧሾ݉
ଷሿ	is the expected 3rd order moment of n aggregated demands, 

skewness, ⊗ the Kronecker product, M3 the (n,n2) co-skewness matrix of the n 
single-user demand signals, ܧሾ݉

ସሿ	the expected 4th order moment of n aggregated 
demands and M4 the (n,n3) co-kurtosis matrix of the n single-user demand signals. 
     From eqns (3) and (4) it is not straightforward to derive the exponent α of the 
scaling law (eqn. (1)), therefore, in the following we present the results obtained 
analyzing synthetically generated data and multi-year real data of water 
consumption. 
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2.1 Analysis of synthetically generated data 

In order to verify the influence of the correlation among the demand data on the 
scaling of the 3rd and 4th order moments 30 single-user demand series are 
generated using a Monte Carlo simulation. At this aim, water demand is modelled 
as a random variable with a gamma pdf, mean = 0.50 l/min and variance = 
2.44 l/min. For the cross-correlation coefficient three distinct values are 
considered, namely, ρ = 1×10-9, ρ = 0.01 and ρ = 1.00. The first value of the cross-
correlation coefficient corresponds to virtually uncorrelated demands. The second 
value corresponds to a more realistic situation, in which some correlation between 
demand series exists, and the last one represents perfectly correlated demands. 
Using eqns (2), (3) and (4) the statistical moments at different aggregation levels 
are evaluated. The 3rd moment is a measure of the asymmetry of the probability 
distribution, whilst the 4th moment is a measure of whether the data are heavy-
tailed or light-tailed.  
     Figure 1 presents the trends of the 3rd and 4th order moments changing the 
correlation coefficient ρ. Expressing these moments with the power laws  
 

   
(a) 

   
(b) 

     
(c) 

Figure 1: Scaling of the 3rd and 4th statistical moment: (a) ρ = 1×10-9,  
(b) ρ = 0.01, (c) ρ = 1.00. 
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ଷሿߪሾܧ ൌ ଵߪ
ଷ݊ఉ and ܧሾߪସሿ ൌ  ଵସ݊ఊ, the exponents β and γ respectively vary in theߪ

range 1.0–3.0 and 1.0–4.0, going from completely uncorrelated demands to 
perfectly correlated demands. 
     More frequently, instead of the third and fourth moment the corresponding 
dimensionless coefficients of skewness and kurtosis are used. Data series with 
positive skewness generally tend to have heavy tails on the right side. On the 
contrary, data with negative skewness generally tend to have heavy tails on the left 
side. Data series with high kurtosis tend to have heavy tails, or outliers. Whilst, 
data with low kurtosis tend to lack of outliers: the uniform distribution is the 
extreme case. The exponent β' of power laws for skewness ranges in between  
െ0.5–0.0 and the exponent γ' for kurtosis ranges in between െ1.0–0.0, going from 
completely uncorrelated demands to perfectly correlated demands (Figure 2). 
 

  
(a) 

 

   
(b) 

 

    
(c) 

Figure 2: Scaling of skewness and kurtosis coefficients: (a) ρ = 1×10-9, 
(b) ρ = 0.01, (c) ρ = 1.00. 
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2.2 Analysis of observed data 

The scaling of the skewness and kurtosis coefficient is also investigated for a set 
of observed demand data. The indoor water uses demand series of 82 single-family 
homes, with a total of 177 inhabitants, in a building belonging to the IIACP (Italian 
Association of Council Houses) in the town of Latina are considered (Guercio et 
al. [11]; Pallavicini and Magini [12], Vertommen et al. [4], Ridolfi et al. [13]). 
The apartments are inhabited by single-income families, belonging to the same 
low socioeconomic class. This circumstance enabled to consider a group of users 
substantially homogeneous in terms of lifestyle and water consumption habits, 
thereby making the assumption of a homogeneous process acceptable. The results 
are shown in Figure 3. It is evident that when the sampling time increases both the 
skewness and the kurtosis gets the typical trends of strongly correlated data.  
 

    
(a) 

 

  
(b) 

 

   
(c) 

Figure 3: Scaling of skewness and kurtosis coefficients for real data for 
different sampling time dt: (a) dt = 20s, (b) dt = 60s, (c) dt = 600s. 
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     In Table 1, the hourly average values of the coefficient and the exponent of the 
scaling law obtained from the analysis of three-week data are reportted. Figure 4 
shows the pdf of the demand signal measured at 6 am considering different 
numbers of users. It shows that when the number of users grow the exponential 
distribution is replaced, first, by the GEV distribution and then, by the 
gamma distribution. 

Table 1:  Hourly average values of the coefficient and exponent of the scaling 
law at different sampling times for hourly demand. 

 
dt = 20s dt = 60s dt = 600s 

 
A α A α A α 

Variance 1.62 1.03 1.39 1.04 0.58 1.08 
Skewness 5.17 -0.51 4.21 -0.50 0.85 -0.35 
Kurtosis 20.82 -0.67 12.55 -0.30 2.40 -0.03 

 

 

Figure 4: Probability density functions of real data for different number of 
aggregated users at 6 am: (a) 8 users, (b) 24 users, (c) 52 users. 
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3 Scenario generation 

The knowledge of the scaling laws of the statistical moments and the shape of the 
probability distributions of water demand in relation to the number of users, is a 
useful tool to face the inherent uncertainty of demand in modeling the WDS and in 
particular to address the optimization problems for both design and management. 
Several methods are available for dealing with uncertain parameters in 
optimization problems: sensitivity analysis, stochastic programming and 
robust optimization. The choice of the scenarios is a critical step in obtaining 
meaningful solutions with the right compromise between system performance and 
robustness to variations in uncertain parameters. 
     If the statistical features of the uncertain parameter are known, numerical 
solutions can be obtained by approximating the pdf with discrete distributions 
having a finite number of outputs: scenarios. In this case scenarios can be 
generated following different methods. In one group of scenario generation 
methods, scenarios are derived by sampling from assumed marginal distributions. 
Techniques based on Monte-Carlo simulation and covariance matrix can be used 
(Ridolfi et al. [14], Vertommen et al. [15]). Another group of methods are based 
on matching a small set of statistical properties, e.g. moments. These methods can 
in turn follow two different paths (Ponomareva and Date [16] and Ponomareva et 
al. [17]). In the first path the statistical properties of the joint distribution are 
specified in terms of moments, usually including the covariance matrix. In the 
second group, specified (parametric) marginal distributions are sampled 
independently and the samples are then used along with Cholesky factorization of 
the covariance matrix to generate the necessary multivariate distribution (Lurie 
and Goldberg [18]). 
 

 

Figure 5: WDS considered for demands scenario generation. 

     In the following the moment-matching method proposed by Date et al. [19] is 
applied for generating scenarios at the test WDS in Figure 5. This system is not 
used for simulation purposes, but only for setting the scene. The network 
comprises 14 nodes. Two tests are carried out: the following number of users per 
node is considered, in test (a): n= 40, 47, 28, 25, 43, 36, 35, 32, 40, 45, 26, 55, 38, 
50; in test (b): n= 400, 470, 280, 250, 430, 360, 350, 320, 400, 450, 260, 550, 380, 
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500. The algorithm is based on convex optimization which matches exactly the 
mean, covariance matrix and marginal (zero) skewness of a symmetric distribution 
and also matches the marginal fourth moments approximately (by minimizing the 
worst case error between the achieved and the target marginal fourth moments 
(Date et al. [19]). Each scenario has its own weight, which constitutes a probability 
measure within the number of generated scenarios. 
     The scenarios generated with a low number of users show greater fluctuations 
around the average values with respect to those related to a higher number of users. 
In both cases, the statistical moments have been derived using the scaling laws. 
 

 
(a) 

 

 
(b) 

Figure 6: Generated scenarios: (a) low number of users per node; (b) high 
number of users per node. 

4 Conclusions 

In this paper, we have extended to the 3rd and 4th order moments the analytical 
equations, namely scaling laws, expressing the dependency of the statistical 
moments of demand signals on the sampling time resolution and on the number of 
served users. Analysis on synthetically generated and experimental data have 
shown that the scaling laws of the 3rd and 4th statistical moments depend on the 
Pearson correlation coefficient. In particular, the exponents of the power laws for 
the 3rd and 4th moment vary, respectively, in the range 1.0–3.0 and 1.0–4.0 and 
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for the skewness and kurtosis, respectively, in the range –0.5–0.0 and –1.0–0.0, 
going from completely uncorrelated demands to perfectly correlated demands. 
Also, we have described how the pdf of the demand signal changes when the users 
number increases, ranging from the exponential to the gamma distribution. These 
results can be a useful tool in generating scenarios for WDS modelling and in 
particular in the moment-matching approach, as showed applying the method 
proposed by Date et al. [19]. 
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