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Abstract 

In this paper a model and a procedure for signal setting design with demand 
assignment are reported. The model is developed within a day-to-day dynamic 
framework where demand assignment is dealt with through deterministic (or 
stochastic) process models. The system of models, based on a what-to approach, 
generates signal timings taking into account users path choice behaviour as well 
as stability constraints. The main contribution in this paper is the specification of 
the heuristic procedure for signal setting optimization, based on genetic 
algorithm. The procedure is tested on a real scale test site with the objectives to 
validate the system of models and the optimization procedure. A sensitivity 
analysis with respect to demand level is also briefly discussed. 
Keywords: signal setting, traffic control, day-to-day dynamic. 

1 Introduction 

This paper deals with the design of signal setting in urban areas. This problem 
can not be solved without considering the user behaviour at least at route choice 
level. The resulting problem belongs to the class of problem of transportation 
supply design with assignment [1–4]. 
     Two main approaches have been proposed with respect to the method for 
demand assignment (with probabilistic path choice behaviour): equilibrium 
assignment, effectively approached by fixed-point models; day-to-day dynamic 
process models, derived from time-discrete non-linear dynamic system theory.  
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Three main approaches have been proposed with respect to the method for signal 
setting design: with fixed flows, with flows from equilibrium assignment, with 
flows from day-to-day dynamic assignment. 
     In signal setting with fixed flows, say optimization of signal timings, the flow 
pattern is considered known (for a general review see [5]). This approach can be 
considered day-to-day static because the flows (obtained from observations or 
from a model) are supposed fixed as regard the optimization in each time slice, 
even though they can vary during consecutive time slice.  
     In signal setting with equilibrium assignment, the flow pattern is considered 
affected by the user path choice behaviour. Interaction between the user choice 
behaviour and the level of service provided by the transportation network is 
addressed through user equilibrium assignment that searches for mutually 
consistent arc flows and costs. Signal setting with equilibrium assignment has 
been proposed in literature since middle 70s [6] according to exact approaches, 
say Global Optimization with Equilibrium (EGO), or heuristic approaches, such 
as Recursive Optimization (RO) (also called iterative procedures) and Embedded 
Optimization (EO). Some methods are relative to the signal setting design in 
emergency condition [7, 8]. 
     In signal setting with day-to-day assignment, the evolution over time of the 
flow pattern is explicitly modelled through dynamic process models.  
     The approaches proposed in literature are based fixed flows or on equilibrium 
assignment, well established in literature. Some relevant issues may not be 
effectively addressed under the equilibrium approach, mainly uniqueness and 
stability, sensitivity to parameters and/or starting state. These issues are better 
casted within the day-to-day dynamics paradigm, including deterministic process 
models as well as stochastic ones. 
     In this paper a model and a procedure for signal setting design are reported. 
The model is developed within a day-to-day dynamic framework where demand 
assignment is dealt with through deterministic process models. This problem 
seems relevant since optimization of signal timings under equilibrium 
assumptions may not guarantee that an effective solution is obtained, because it 
may well be not an attractor of the evolution over time.  
     The main contribution of this paper is the specification of the general 
procedure, based on a genetic algorithm, specified and applied to a real size 
network for solving the described model. Results of a sensitivity analysis with 
respect to demand level are also reported.   
     After this introduction, section 2 briefly reports the main part of the general 
model that is reported in [9]. Section 3 reports the genetic proposed procedure 
specified for the optimization model. Section 4 describes how the proposed 
approach can be applied to real scale networks and some sensibility of the 
procedure in relation to the user choice simulation behaviour. Section 5 reports 
some conclusions and further developments.  
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2 Models for signal setting 

A transportation system is usually modelled through a network with a 
transportation cost ca and a flow fa associated to each arc a. Without any loss of 
generality each access a of a junction is assumed corresponding to arc a (but not 
necessarily vice versa). Users are assumed grouped into classes. Let (in 
alphabetical order): 
 

Bi  is the arc-path incidence matrix for user class i, with entries bak = 1 if arc 
a belongs to path k, bak = 0 otherwise; 
c  be the vector of arc costs, with entries ca, including delays at junctions, 
running times, monetary costs for tolls, etc.; 
di  0 be the demand flow for users belonging to class i; 
f  0 be the vector of arc flows, with entries fa; hence for an arc a corresponding 
to an access fa, is the arrival flow; 
f t be the vector of arc flows at day t; 
g  Sg be the vector of signal timings (such as green times, cycle time, starting or 
ending time of the green period for each access, the offset of the signal plan for 
each junction, and possibly others);  
xt be the vector of arc forecasted costs at day t, say the costs that affect 
today user choice behaviour; 
n be the number of arcs; 
pi  0 is the vector of path choice probabilities for user class i, with 1T pi = 1, 
with entries given by the probability pk that users of class i choose path k; 
Sf = {f = i di Bi pi : pi  0, 1T pi  = 1 i}  be the set of feasible arc flows, non-
empty (if the network is connected), compact, convex; 
Sg be the set of feasible signal timings (including non-negativity constraints). 

2.1 Static flows 

Congestion is generally simulated assuming that arc costs depend on arc flows, 
and possibly on signal timings through the arc cost function: 

 c = c(f, g)  (1) 

     The arc flow function can be defined as: 

 f = f(c) i di Bi pi(Bi
T c)  Sf (2) 

     The user equilibrium assignment searches for mutually consistent arc flows 
and costs, thus assuming that the signal timings are known, g = go, equilibrium 
assignment can be expressed by fixed-point models by combining the arc cost 
function and the arc flow function [10, 11]: 
 c* = c(f*, g = go)   Rn ;+ (3) 

 f* = f(c*)    Sf    Rn ;+ (4) 

     In the following the arc cost function is assumed continuous and continuously 
differentiable w.r.t. arc flows, f, with Jacobian matrix Jc(f,g=go)= 
=Jac[c(f,g=go)]f. For given signal timings g = go, w.r.t. arc flows, f, the arc cost 
function may be assumed: monotone strictly increasing (or simply monotone 
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increasing), say with (semi-)positive definite (for real vectors) Jacobian Jc(f), 
and possibly with symmetric Jacobian Jc(f), as it occurs for separable cost 
functions. 
     Other equivalent  models can be formulated w.r.t. path variables: 

 f* = f(c(f*, g = go))   Sf (5) 

     Sufficient conditions for existence of solutions can be easily derived, through 
Brouwer theorem, requiring that both the arc cost function and the arc flow 
function are continuous (and the network is connected).  
     Assuming that the arc flow function is monotone decreasing, as for invariant 
probabilistic path choice functions, if the arc cost function is monotone strictly 
increasing uniqueness is assured; if the Jacobian matrices of both the arc flow 
function, f(c), and the arc cost function, c(f, g = go), are meaningful, uniqueness 
is granted by positive definite Jc(f, g = go) and negative semi-definite Jf(c).  
Considering static flows (where flows do not change from one day to another 
one and are assumed time-independent) three cases can be considered: (I) signal 
setting with fixed flows (fo), (II) signal setting with feasible flows and (III) signal 
setting with equilibrium assignment. 
     I. For a given Fixed Flow (FF) arc vector, f = fo, most signal setting methods 
based on arrival flows can formally be expressed as: 

 gFF = argoptg  Sg  z(g, f = fo) (6) 

where z(g, f = fo) is an objective function to be optimized, such as the total cost 
or total delay to be minimized: 
z(g, f = fo) = fo

T c(f = fo, g) 
    II. Global Optimization (GO) model for signal setting, where arc flow vectors 
are assumed belonging to the feasible arc flow set can formally be expressed as: 

 (gGO, fGO) = argoptg  Sg, f  Sf  z(g, f) (7) 

     III. Equilibrium constrained Global Optimization (EGO) models are 
extension of (unconstrained) global optimization models (7):  

 (gEGO, fEGO) = argoptg  Sg,  f  Sf  z(g, f)  (8) 

 w.r.t.   f  f(c(f, g)) = 0 (9) 

2.2 Day-to-day dynamic flows 

This section formally introduces signal setting with (day-to-day) dynamic 
process assignment after [12], where evolution over day t is explicitly modelled.  
Congestion is simulated assuming that arc costs depend on arc flows ft and on 
signal timings g, through the arc cost function: 

 c = c(f t, g)  (10) 

     The arc flow function can be defined: 

 f = f(xt) = i di Bi pi(Bi
T xt)  Sf (11) 

     The specification of a dynamic process requires the explicit modelling of user 
learning and forecasting and user choice updating behaviour. A quite simple but 
effective model based on exponential smoothing is presented assuming that 
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signal timings are known, g = go. Arc forecasted costs depend on yesterday 
actual and forecasted costs, through the cost updating recursive equation: 
 xt =  c(ft-1, g = go) + () xt-1 (12) 
where  ]0,1]. 
     Moreover, each day users may review yesterday choice with a fixed 
probability, and their reviewing behaviour can be simulated with an exponential 
smoothing filter, through the flow updating recursive equation: 
 ft = f(xt) + () ft-1 (13) 
where  ]0,1]. 
     The recursive equations (12) and (13) define a deterministic process model 
for demand assignment to a transportation network. For given signal timings, g = 
go, the state at day t is defined by the vectors of arc anticipated costs and arc 
flows, (xt, ft), belonging to state space given by Rn ;+ Sf. 
     Fixed-points states, where the evolution over time of the system stops (even 
though they may not be attractors), are given by: 

 (xt, ft) = (xt-1, ft-1) = (x*, f*) (14) 

     This condition combined with equations (12) and (13) yields: 

 x* = c(f*, g = go) (15) 

 f* = f(x*)  (16) 

     Assuming that the arc flow function has a symmetric negative semi-definite 
Jacobian, Jf(c), as it occurs for invariant choice functions, if Jacobian, Jc(f), of 
arc cost function is symmetric positive definite, then matrix Jc(f

t, g = go)  Jf(x
t) 

has only non-positive real eigenvalues, a = a(f
t, xt) = Rea). In this case a 

fixed-point (x*, f*) is (locally) stable if each eigenvalue a* = a(f*, x*) of 
matrix Jc(f*, g = go)  Jf(x*), computed at the fixed-point state, meets the 
following condition  

 a(f*, x*) | =  Rea*) oa (17) 

where  o = (1 + ((1  ) + (1  )) / ()). 
     Equilibrium stability may be addressed within models for (global) 
optimization with equilibrium assignment by including further constraints 
expressing stability conditions depending on assumptions about the Jacobian 
matrix Jc(f, g = go) of arc cost function. Thus, a model for global optimization of 
signal timing with stable equilibrium constraints (SEGO) may be specified as 
follows: 
 (gSEGO, fSEGO) = argoptg  Sg,  f  Sf  z(g, f) (18) 

 w.r.t.   f  f(c(f, g)) = 0 (19) 

 MAXa | a(f, c(f, g)) | o (20) 
     The evaluation of (20) to a large scale network is time consuming. It is useful 
to note that the maximum modulus among all the eigenvalues of a matrix is 
always less than (or equal to) any matrix norm and for transportation networks 
the Frobenius norm provides a very tight approximation and at the same time can 
easily be computed; hence (20) can be approximated as: 

 (f, g) = || Jc(f, g)  Jf(c = c(f, g)) ||F – o  0 (21) 
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3 Proposed procedure  

The design procedure (figure 1) proposed in this paper aims at the solution of 
signal setting with stability constraints derived from a day-to-day dynamic 
model. The procedure generates and analyses potential solutions in order to 
optimize an objective function. It is made up by two main interacting sub-
procedures: an optimization module, based on a genetic algorithm, which 
provides new solution to be add to the population of solutions; an assignment 
module, based on a fixed-point model (section 2), which provides flows and 
objective function values for each generated solutions; the objective function 
also includes the stability constraints through a penalty function. 
 

 

Figure 1: Design procedure. 

     According to the optimization genetic algorithm each solution vector g is 
described by a chromosome (figure 2) with three sections. The first has one entry 
containing the common value of cycle time, useful for cycle evaluation relative 
to each junction. The second has a number of entries equal to the number of 
junctions and each of them being the integer multiple, sMu, of the cycle time of 
junction u w.r.t the common cycle time, CB. The thirty contains the ratios, u

j, 
between the time of each stage j of junction u and the cycle time for the same 
junction; in each junction, the number of these entries is equal to the number of 
stages less 1. (The structure can be extended to include offsets). 
 

 

Figure 2: Structure of the chromosome. 
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     The optimization genetic algorithm (figure 3) starts with an initial set of 
solutions (POP), grouped into a randomly generated population (Pop_G). A new 
population Pop_A is generated. Afterwards, population evolves through three 
operators (or evolution functions), which are sequentially applied. Reproduction 
consists in selecting a sub-set of solutions from the population, the best will 
likely survive and create new offspring (Pop_R). Crossover selects genes from 
parent chromosomes and creates new offspring (Pop_C). Then, the mutation 
takes place and it changes randomly the new offspring, in order to prevent all 
solutions in the population falling into the local optimum of solved problems 
(Pop_M). Once a new set of solutions is generated, a stopping test evaluates 
whether a new iteration must be performed or not, according to some stopping 
criteria. At the end of each iteration, the best solution replaces the current 
project.  
 

 

Figure 3: Structure of the solution generator procedure. 

     In each stage, new solutions are evaluated with the assignment procedure for 
the estimation of objective function, z. The stability constraint for penalizing 
those solutions that does not guarantee the equilibrium stability through a poor 
value of the objective function is activated. 
     The procedure has two types of input relative to the transport system models 
and to the algorithm parameters.  
     The transportation system is specified with travel demands models (that 
represent how users behaviour changes with users cost), transport supply models 
(that represent how users cost changes with traffic flow) and demand-supply 
interaction model. In the supply models the dependence between signal setting 
and traffic flows is also included. The models are relative to the present 
configuration of supply facilities and services and user behaviour.  
     The genetic algorithm parameters are the population size (POP), the crossover 
(CRO) and mutation (MUT) rates, the reproduction parameter (REP), and the 
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convergence test parameter. Constraints on the minimum and maximum cycle 
length, and minimum green time are also considered. The transport model gives 
for each solution g, a global network indicator, which represents the objective 
function, including a penalty term for the stability constraint, then, the current 
optimal solution updated g*. The algorithm stops when the (pre-fixed) maximum 
number of iterations without improving the value of the objective function is 
reached. Output is the current optimal vector g*. 

4 Application 

The procedure has been applied to the network of Crotone, a city in the southern 
Italy, containing 15 centroids, 157 nodes and 432 arcs, 88 OD pairs. Seven 
signalized junctions have been identified.  
     Each street link, ending in a signalized junction, is modelled through a 
running arc and possibly several parallel access arcs. For the run arcs, the 
Davidson hyperbolic function with a linear approximation of 0.75 for the flow-
capacity ratio has been adopted; for access arcs, the Webster function with a 
linear approximation 0.40 for the flow-capacity ratio has been adopted. 
     The equilibrium flow vector is obtained with an user equilibrium assignment 
with (probabilistic) C-Logit route choice model and explicit path enumeration. A 
(scale) dispersion parameter, , equal to 2 hours has been considered. 
     In relation to the solution generator, the parameters adopted are: 
 crossover rate 0.4;  
 mutation rate 0.4;  
 maximum number of iterations 10; 
 population numerousness 30 chromosomes. 
     The objective function z is evaluated considering the sum of the delays at the 
designed junctions. 
The constraints are: 
 cycle times must be in the range [27 sec, 120 sec];  
 each stage must be no less than 7 sec; 
 user behaviour is expressed with equilibrium condition (19); 
 stability of equilibrium is expressed by stability condition (21). 
     In order to define the best genetic parameters, in the table 1 the procedure is 
tested for some values (0,2, 0,4, 0,6, 0,8) of the crossover and mutation rate (d = 
5300 veic/h;  = 2 h; o(, ) = 9.5). The best value in term of convergence is 
for crossover rate and mutation rate equal to 0,4.  

Table 1:  Sensibility of the algorithm in relation to the crossover and 
mutation rate. 

Crossover Mutation  Total delay (veic h/h)  
rate rate  actual optimal  actual Optimal 
0,8 0,8  319 69  -4,014 -4,008 
0,6 0,6  319 71  -4,014 -4,008 
0,4 0,4  319 58  -4,014 -4,008 
0,2 0,2  319 65  -4,014 -4,008 
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     The problem has been solved for different values of total travel demand for 
the morning peak hour: 4240, 5300 (actual demand), 6360 veic/h. It is assumed 
for the simulation that  = 0.70 (parameters for choice updating) and  = 0.5 
(parameter for cost updating) which give o(, ) = 5.5. The procedure is started 
assuming the actual signal timings as current optimal solution; it is worth noting 
that this solution could not be stable depending on the value of o(, ).  
     Considering the actual demand (5300 veic/h), the proposed procedure, after 
few iterations, provides a stable ( = 0.001) optimal solution, with a 35% 
reduction of total delay with respect to the actual (stable) solution, as shown in 
figure 4 by black triangles. This figure also shows results of increasing o(, ) 
from 5.5 to 9.5; a new solution with a further reduction of total delay is obtained 
(black circles); as expected since the constraint has been relaxed stability 
condition is satisfied ( = 4.014).  
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Figure 4: Results of the optimization procedure for demand = 5300 for 
different values of o. 

     On the other hand, after decreasing o(, ) from 5.5 to 3.5, the actual 
solution is not stable (showing  = 1.964) and the current solution is not 
updated, since no other stable solution can be found (blank squares). This 
example supports the theoretical conclusion that existence of a solution 
satisfying both equilibrium and stability constraints may not exist. This case 
becomes more likely after any increase of demand. Effects of changes of demand 
are briefly discussed below. 
     It is worth noting that if a unique solution to equilibrium assignment exists f*, 
it turns out to be a function of the signal timings, f* = fEQ(g). 
     Figure 5 shows the effect of reduction of demand from 5300 to 4240. In this 
case too, for o(, ) equal to 5.5 or 9.5 a stable solution better than the actual 
one may be found, whilst no stable solution may be found for o(, ) equal to 
3.5.  
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Figure 5: Results of the optimization procedure for demand = 4240 for 
different values of o. 

     Figure 6 shows the effect increase of demand from 5300 to 6360. In this case, 
a stable solution better than the actual one may be found for o(, ) equal to 9.5 
only, whilst no stable solution may be found for o(, ) equal to 3.5 or 5.5.  
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Figure 6: Results of the optimization procedure for demand = 6360 for 
different values of o. 

5 Conclusions 

In this paper the problem of signal setting with (day-to-day) dynamic process 
assignment has been described. This problem seems relevant since optimization 
of signal timings under equilibrium assumptions not guarantee that an effective 
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solution is obtained as the obtained solution may not satisfy stability conditions 
(as those described in the paper). 
     A heuristic solution procedure has also been specified on genetic algorithm 
for the solution generation. Results of an application to a real scale network 
(with C-Logit route choice model) have also been reported. These results 
confirm that an increase of demand may make stability less likely. Some values 
for procedure parameters are tested. 
     Several issues seem worth of further research analysis. Existence and 
uniqueness of solution of proposed models could be investigated. Other signal 
variables may be considered such as offsets, possibly together with street 
directions. Solution procedures based on other heuristics may be tested and 
compared with the proposed procedure. The calibration of all the parameters 
(model and procedure parameters) is a relevant issue still open apart from very 
few papers. 
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