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ABSTRACT 
In this paper, design of trusses supporting a protective wall is discussed. The wall is assumed as 
sufficiently bearable and fully distributes the load caused by explosion. The problem of the 
assessment is narrowed to the optimal design for minimum overall mass of the trusses. The reason 
why the problem of such a protective system is often focused on the optimal shape of trusses is the 
fact that their members may be considered as a system of springs, which are a suitable means of 
dissipating energy induced by the effect of load due to explosion. The explosion is initiated in space 
or directly on the surface of the wall. In our case, vertical walls are considered in 2D; simple 
generalization of the proposed procedure described below can lead to the optimization of trusses that 
are curved both in the plane and in space. The algorithms put forward can be applied well for these 
generalized cases of geometry of the trusses. For various load scenarios, depending on the center of 
explosion, the optimal shape of truss columns are found using a nonlinear programming, based on  
the extended Simplex method. An important circumstance is the introduction of buckling effect in the 
compressed members. The joints are fixed in the plane of the truss and the joint connections are 
selected in such a way that the minimum mass of the whole truss is attained. The approach leading to 
the optimal shape is briefly described. It is taken into account that the optimal structure of the truss is 
achieved exclusively for a statically determinate structure, which always exhibits better results than 
the indeterminate one. Several typical examples accompany the proposed theory.  
Keywords:  protective walls, reinforcing trusses, overall mass optimization, nonlinear programming. 

1  INTRODUCTION 
Optimal mass of selected truss structures is sought, adapting nonlinear programming based 
on extended Simplex method. In comparison to other publications on this topic, the 
buckling of compressed members is also involved in the study. A general procedure leading 
to the optimal arrangement of the members is described and applied to specific cases of 
truss geometry and the position of the charge. 
     Always in 1964, [1], it was proved that when considering statically indeterminate truss, 
then from such a structure one can find certain statically determined truss structure, the 
induced stresses in all members are equal to the given strength and in the same time such a 
structure attains the minimum overall mass. This is a very important prerequisite for further 
considerations in this paper. 
     The effect of the dynamic load induced by the shock wave on the protective walls is 
reported in [2], [3]. In [2], certain experiments are carried out and the results are compared 
with the numerical treatment suggested in the paper; in [3], the effect of a sudden change of 
temperature induced by the explosion is also considered as an additional load of the 
structure.  
     Papers [4], [5], are focused on the effect of explosive load of structures, assuming the 
center of charge outside the structure. In paper [4], simple experiments are performed, the 
empirical formulas from which are deduced. In [5], the complex response of elastic 
laminated archers loaded by the shock wave is studied. In [6], an explosion is initiated in a 
closed space. Again, both the effect of shock wave and temperature are taking into account. 
For numerical evaluation of the behavior of the underground structure that interacts with 
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the shock wave effect, a new numerical method, free hexagons, is used in [7]. In [8], the 
evaluation of the response to the explosion load is presented for various shapes of canopied 
walls, using both the numerical and experimental studies. 
     Papers [9]–[14] also focus on optimizing truss structures; mainly shapes of trusses are 
optimized. In [9], various shapes of roof trusses are compared and optimized: pitched, fan, 
low profile, vault, Polynesian and others. Selected simplified algorithms are applied to 
solve the problem. In [10], modified teaching – learning based optimization is presented, 
while in [11], the charged system search algorithm and its enhanced version are used for 
optimizing various truss structures with multiple frequency constraints. Interactive truss 
design using Particle Swarm Optimization and NURBS curves is applied in [12]. In the 
publication, [13], simulated annealing, and in [14], hybrid genetic algorithms, are used to 
optimize trusses. 
     Since matrix and vector notations are often used in this paper, it is worth noting that [.] 
denotes generally rectangular matrix and {.} is a vector. 
 

2  PRELIMINARY CONSIDERATIONS 
If the truss structure has J nodes, number N of potential members evidently is 
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providing  j  < k < J , and if  k  < j < J then 
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     The forces in the members can either be tensile (positive sign) or compressed (negative 
sign). This is why, similar to the Simplex method, all variables (forces) admit only 
nonnegative values; it is formally assumed that twice the number of eligible independent 
variables in the simplex is considered. For the member e, the tension force and the 
admissible stress in tension (tensile strength) are denoted as 12 ep > 0 and 12 e > 0, 

respectively, and, similarly, the compressive force and the admissible stress in compression 
(compressive strength) are ep2 > 0 and e2 > 0, respectively. It follows from this notation 

that the odd subscripts indicate tension and even one compression. In this section, let us 
omit buckling. Paper [1] points out that from all truss connections, there exists certain 
statically determined optimal structure which provides minimum overall mass and the 
stresses in all members are equal to the given strength. No combination of members in  
a statically in determined truss structure can provide a better solution. Then, the cross-
sectional areas eA2 and 12 eA of the member e is derived from the strength in an individual 

member e, 
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     In an individual member, always at least one summand disappears. The total mass M of 
the structure can then be expressed as, 
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where e  is the mass density and el  is the length of the member e. Introducing 
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and 
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the overall mass equals 
 

}.{}{ T PCM  .                                                         (8) 

 
     Directional cosines with respect to the coordinate axes 1x , positive from left to right, of 

the member e  are indicated by 12 er  and er2 . The coordinate 2x  is taken positive upwards. 

These cosines respect the direction from j  to k , j < k . The equilibrium at the nodes 

Jj ,...,2,1  of the truss in the directions 1x  (horizontally) and 2x (vertically) is recorded 

as, 
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where 12 jb , jb2  are components of external nodal forces at j  including possible 

reactions at supports. In eqns (9), the running index e  in the first sum on the left-hand side 
fulfils eqn (3), while e  in the second sum is defined in eqn (2). 
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3  LINEAR CASE 
In the linear case (without involving the buckling effect in the compressed members), eqn 
(8) is valid and linear equations of equilibrium (9) can be formed in a matrix form as, 
 

}{}]{[ BPR  ,                                                          (10) 

 
where the definition of }{P  is found in eqn (7), and 
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     The dimension of ][R  is )22( NJ  , the dimension of the vector }{P is )12( N , see 

def (7) , and the dimension of the vector }{B is )12( J , see def (11). Till the end of this 

text the first forces in turn },,{ 1 Npp  are assumed tensile and are taken 

compressed. The vector }{C  and the matrix ][R  also undergo the appropriate permutation.  

     The optimization problem may be formulated as: Find minimum )(PM  constrained by 

the condition: 
 

}0{}{ P ,                                                              (12) 

 
normal stress at each member attains the admissible stress (see the definition of the vector 

}{C in def (6)). 

     Maximum number of members in a statically determined truss in 2D is 
 

32  JK .                                                            (13) 
 
     In the same time, the number K is the rank of the linear system of eqns (10). In this 
sense, the optimization problem reduces to finding appropriate combination of K members 
appropriately selected from all N members, the forces in which obey the condition (12); all 
forces which respect the latter conditions create the basis. 
     Hereinafter, the above introduced relations can be split into sub-vectors and sub-
matrices as, 
 

T
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where the subscript I refers to the basis and subscript E is related to the zero off-basis 
forces, i.e., 
 

}0{}{ E P .                                                         (15) 

 
    Latter partitioning applies to eqns (8) and (10). Moreover, introduced matrix and vectors 
are further split into the linearly independent system 1 and the residual system 2, which is 
on the system 1 dependent, 
 

},,{ 21 NN pp 
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where ][ 1IR  has dimension )( KK  , and the dimensions of the other matrices are obvious. 

Inasmuch eqn (15) is valid, it remains to solve }{ IP : 

}{][}{ 1
1

I1I BRP  .      (17) 

 It is worth noting that applying Gaussian elimination to eqn (10), the identity 

][][ 1
I1 IR  can be attained, where ][I  is the unit matrix, so that 

}{}{ 1I BP  .      (18) 

 The expression of the overall mass M is now reduced as, see eqn (8), 

}.{}{ I
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 The matrices ][ 1IR , ][ 1ER  can formally be recorded as, 

}]{},...,{},[{][ 211I KRRRR   ,      }]{},...,{},[{][ 2211E NKK RRRR  ,     (20) 

where, obviously, {Ri } , i  =1,2,..., K , are column-vectors associated with the basis. Note 

that for simplicity i  =2e −1, as no buckling effect is assumed and the forces in the 
compressed members behave as that in tensile members. 
     Our goal is to enter a proper force from }{ EP , which substitutes outgoing appropriately 

selected force from the current basis in order the overall mass of the truss to be reduced. In 
the same time, interchange of the respective column in ][ 1ER  and the column in ][ 1IR has to 

be performed. Introducing an auxiliary matrix  Z , each column }{},...,{},{ 221 NKK RRR 

in ][ 1ER  can be formulated as a linear combination of the vectors in ][ 1IR : 

]][[][ I11E ZRR  ,     (21) 

taking into consideration that there always exists such a basis for which ][ 1IR is regular. 

The auxiliary matrix, ][Z , has dimensions ))2(( KNK  . From eqn (21) immediately 

follows that 
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If ][ I1R  is the unit matrix, ][][ 1ERZ  . 
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 Let us denote the new member n  which is selected as the potential member of the new 
basis (incoming member) and m  is the outgoing member. Eliminating the old system of 
constraints leads us to the following relations for the new configuration: 
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where i  runs from 1 to K  but mi  , and Nj 2,,1  , 

or 
old

;1
oldnew

;1 mjIinijijI RZIR   , 
oldoldoldnew
mjinijij ZZZZ   ,    

old
;1

oldold
;1

new
;1 minii bZbb    (25) 

The barred quantities arise from dividing the introduced expression by Zmn
old . 

After permutation of the columns m and n including commutation of cm and cn,  [RI1
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turns to the unit matrix I if 
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 With respect to eqn (18), oldold
;1 ii pb  , for Ki ,,1  and eqn (25) becomes 
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, which is the true value of the force in the member n

entering the new configuration. 
 If one wants to introduce a new force 0n in the member n , one obtains a new set of 

forces newPI in the new basis: 

nini Zpp θoldold
i

new  .    (26) 

     The couple ),( nm  creates the key point in terms of the Simplex method, m  identifies 

the outgoing column and n  the ingoing one. In this way, the component of }{C changes for 
nC}{ , in which the value of c at the position m  interchanges with nc  at the position n . 

 Then, the mass changes by the value, 
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     Note that the first term of the right-hand side in eqn (25) is the mass in the old 
configuration while the rest of the right-hand side is the mass of the new set up of members 
in the truss studied. As 

 

min)( oldoldnew  ninii Zpp θ ,                                              (28) 

 
see eqn (26), optimality condition for selecting n  leads to: 
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so that the previous minimization leads to the identification of the member 

)(1,...,0 Kjm   and fulfils the minimization criterion eqn (29). The member m  is 

leaving the basis, as for such a member the mass increases.            
     In the matrix form, eqn (27) provides 
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and as n  is required to be positive, the criterion for reduction of mass is, 

 

0}){}{(Δ oldToldold  nInn ZCc  for NKn 2,...,1 .                        (31) 

 
     The basis is then interchanged taking into account the member pertaining to the number 
n . In order for the mass to decrease in the current iteration, nΔ  in (26) should be 

minimized, i.e., 
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     The force n  reflects the interchange of the n -th force out of the current basis and the 

forces }{ IP to get improved nP }{ I , the component cPI,  in which is substituted by n , and 

which still fulfils the equilibrium at the nodes, i.e. ][ 1IR changes for nR ][ 1I due to ][ ,1E nR . 

4  BUCKLING 
In this section, a similar problem as that discussed in the previous section is studied, but is 
expanded for the assumption that the compressed members posses buckling property with 
slenderness ratio pertaining to the Euler area. The critical compressive stress crit  in the 

member e  is equal to critical force ep2  divided by the cross-sectional area eA .  

          Considering the safety margin E , the Euler formula is expressed as, 
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where 
e

e
e A

I
i   is the radius of gyration of the member cross-section with the area eA , 

and eI is its moment of inertia. 

     Sometimes an additional coefficient is introduced to the formula (33), which expresses 
the number of waves, assuming that the member after buckling includes nodal points with 
zero deflections. Since the relation between the mass em of the member e  and the force 

ep2 is sought, (33) can be rearranged as, 
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     Hence, for compressed member a new multiplier ec2  of the force ep2  is created as  
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     Introducing the expression for the mass of compressed members, eqn (19) is completed 
as, 
 

}{}{}{}{ TT





  PCPCM
,
                                                  (36) 

 
where },...,,{}{  ,},...,,{}{ 2242121231 KeK-e- ,...,ppppP,...,ppppP   . In what follows the 

index denotation is slightly changed. To each member index identification of internal forces 
is narrowed and only one integer is assigned either for tension or compression. Then, 
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The next approach is the same as that introduced in the previous section.  

5  EXTERNAL STATIC INDETERMINACY 
So far, the structure was considered as externally determinate. If it is not so, the structure 
possesses too many external constraints, the deformation conditions have to be employed. 
At the positions the redundant forces are located, unit displacement impulses in the 
direction of acting reactions are applied to get  
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where ip is the improved force due to external indeterminacy in the member i , oip is the 

force in the same member i  from the loading the basic statically determined structure, S  is 
the number of external constraints – 3 in 2D, ij is the axial force in the member i  due to 

the unit load at the superfluous support j , jX  is the real value of the reaction. This will be 

detected from the deformation condition in the sense of force method. 

6  EXAMPLES 
Suppose the protective wall depicted in Fig. 1. Various combinations of geometry and 
number of trusses in structural systems are studied. In case the buckling takes place, the 

constant in eqns (34), (35) is selected as: 33.0
1

E




e

e

I

A
. The optimal truss structures are 

observed in certain typical scenarios. In Fig. 2, the simplest two span steel truss is 
investigated, loaded along the lower chord. In the results of iteration shown, two members 
are obviously equal to zero while in the optimal set up even four members are annihilated, 
although the number of compressed members increases. 
 

 

Figure 1:  Protective wall with the protective plate and system of supporting trusses. 

 

Figure 2:  Two span truss optimized, iteration lbs) 833kg 378( M , and optimal 

shape. lbs).642 291 kg( M  
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     In the next example, the optimum possesses almost the same configuration as that 
attained in previous iteration. The load distribution corresponds to the source of the 
explosion that is placed on the ground. 
     In Fig. 4, again a three-span truss is studied with the loading distributed along the lower 
chord, which simulates the influence of the shock wave leaving the structure and causes 
sucking. Comparing the geometry of the optimized truss structures displayed in Fig. 3 and 
Fig. 4, the difference appears only in the field most distant from the supports. The value of 
the optimal mass is again not significant in comparison with the previous iteration step. 
     With respect to a relatively small difference of mass, the structure displayed in Fig. 4 
can be considered by mass equivalent. Thus, the decisive factor consists in an architectural 
and construction view, which of the two alternatives can be evaluated as appropriate. In 
many cases the optimized structures are of the shapes, which are for architects 
unacceptable. Then such an optimized structure may be considered as a design draft and 
serve a support for final design decision. 
 

 

Figure 3:  Three span truss in optimization, upper chord loaded, iteration 
1642 lbs)745 kg( M and optimal shape 1634 lbs).741 kg( M  

 

 

Figure 4:  Three span truss is optimized, lower chord loaded, iteration 
1235 lbs)560 kg( M and optimal shape 1195 lbs)542 kg( M . 
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Figure 5:  Four span truss in optimization, iteration lbs) 2033kg 922( M and optimal 

shape lbs).1510 685 kg( M  

     The last case involves four span truss structure loaded by the shock wave positioned 
again in the terrain. Here the minimum mass is attained again for some members with zero 
forces; two members are annihilated, for example. Optimum is significantly different from 
the previous iteration. 

7  CONCLUSION 
Nowadays, the protection against explosions belongs to the main issue in civil engineering. 
In this paper, optimal shapes of truss structures serving as supports of protective wall are 
sought. The solution starts with the basic ideas of classical simplex method, which are 
partly implemented to the approach of this optimization. A very important factor is the 
inclusion of buckling of compressed members in the formulation of the problem. 
     In the case of a more complex structure, the compressed members are firstly changed to 
the tensile ones till the internal equilibrium forces the tensile members to be partly replaced 
by compressed. The latest iteration steps apply only to the tension members; the effect of 
compressed members to the mass remains always constant. With respect to a relatively 
small difference of mass, the structure displayed in Fig. 4 can be considered almost similar. 
This can happen often; such a phenomenon is a positive result, as the decisive factor 
consists in an architectural and construction opinion, which of the alternatives can be 
evaluated as more appropriate. Solved examples deal with externally determinate structures 
only, but it is easy to optimize the design using the proposed method also in the case of 
externally indeterminate trusses, as is apparent. 

ACKNOWLEDGEMENT 
Financial support by the Grant agency of the Czech Republic No. 17-04204S is greatly 
acknowledged.  

REFERENCES 
[1] Fleron, P., The minimum weight layout of trusses. Bygnings statiske meddelelser 

35(3), 1964. 

3 m 

3 m 

3 m 

3 m 

3 m 

2 kN 

2 kN 

4 kN 

8 kN 

Safety and Security Engineering VII  453

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 174, © 2018 WIT Press



[2] Giovino, G.,  Opati, P.,  Garbati, S.  &  Bontempi, F., Blast resistance assessment of 
concrete wall panels: experimental and numerical investigations. International 
Journal of Protective Structures, 5(3), pp. 349–366, 2014. 

[3] Procházka, P.P., Deterioration of FRC plate due to explosion and change of 
temperature. Key Engineering Materials, pp. 525–526, pp. 185–188, 2013. 

[4] Lavarnway, D.  &  Pollino, M.,  Mitigation of air-blast pressure impulses on building 
envelopes  through  blast  resistant  ductile  connectors. Journal of  Engineering and 
Architecture, 3(2), pp. 9–24, 2015. 

[5] Prochazka, P.P., Kravtsov, A.N. & Lok T.S., Assessment of laminated cylindrical 
arch loaded by a shock wave. International Journal of Protective Structures, 2(2), pp. 
267–282, 2011.  

[6] Prochazka, P.P., Effect of explosion and fire on underground structures. International 
Journal of Protective Structures, 4(4), pp. pp. 505–520, 2014. 

[7] Prochazka,  P.P.  &  Lok,  T.-S.,  Explosion and temperature resistance of underground 
structures by free hexagons. Key Engineering Materials,  488–489,  pp. 678–681, 
2012. 

[8] Smith,  P.D.,  Blast  walls  for  structural  protection  against  high  explosive threats:  a 
review. International Journal of Protective Structures, 1(1), pp. 67–84, 2010. 

[9] Kaur, G., Bansal, R.S. & Kumar, S., Shape Optimization of Roof Truss.   International
Journal of Engineering Research & Technology, 5(6), pp. 696–700, 2016. 

[10] Camp, C.V. & Farshchin, M., Design of space trusses using modified teaching–
learning based optimization. Engineering Structures, 62–63, pp. 87–97, 2014. 

[11] Kaveh, A., Sheikholeslami, R., Talatahari, S. & Keshvari-Ilkhichi, M., Chaotic 
swarming of particles: A new method for size optimization of truss structures. 
Advances in Engineering Software, 67, pp. 136–147, 2014. 

[12] Felkner, J., Chatzi, E. & Kotnik, T., Interactive truss design using Particle Swarm 
Optimization and NURBS curves. Journal of Building Engineering, 4, pp. 60–74, 
2015. 

[13] Hasançebi, O. & Erbatur, F., Layout optimisation of trusses using simulated 
annealing. Advances in Engineering Software, 33(7)–(10), pp. 681–696, 2002. 

[14] Frans, R. & Arfiadi, Y., Sizing, shape, and topology optimizations of roof trusses 
using hybrid genetic algorithms, Procedia Engineering 95, pp. 185–195, 2014. 

454  Safety and Security Engineering VII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 174, © 2018 WIT Press




